Mathematics 2210-90 Calculus III, Final Examination Jul 29,30,2003

1. Find the equation of the line through the origin and orthogonal to the plane through the points P(2, -1, 0), Q(1, 2, 1) and R(3, 0, 2).

Solution. By "the equation of the line" we mean either the parametric equation or the symmetric equationsw; whichever is easier for you. The vectors $\overrightarrow{PQ} = -\mathbf{I} + 3\mathbf{J} + \mathbf{K}$, $\overrightarrow{QR} = 2\mathbf{I} - 2\mathbf{J} + \mathbf{K}$ lie on the plane, so are orhogonal to the line L which we seek. Thus $\overrightarrow{PQ} \times \overrightarrow{QR} = 5\mathbf{I} + 3\mathbf{J} - 4\mathbf{K}$ is in the direction of the line. Since (0,0,0) is on the line the equation (symmetric or parametric) is

$$\frac{x}{5} = \frac{y}{3} = \frac{z}{-4}$$
 or $\mathbf{X}(t) = 5t\mathbf{I} + 3t\mathbf{J} - 4t\mathbf{K}$.

2. A particle moves through space as a function of time: $\mathbf{X}(t) = t\mathbf{I} + \ln t\mathbf{J} + t^2\mathbf{K}$. Find the tangential and normal components of the acceleration when t = 1.

Solution. First, we differentiate:

$$\mathbf{V} = \mathbf{I} + \frac{1}{t}\mathbf{J} + 2t\mathbf{K}$$
, $\mathbf{A} = -\frac{1}{t^2}\mathbf{J} + 2\mathbf{K}$.

Evaluating at t = 1: $\mathbf{V} = \mathbf{I} + \mathbf{J} + 2\mathbf{K}$, $\mathbf{A} = -\mathbf{J} + 2\mathbf{K}$, and $ds/dt = \sqrt{6}$. Then

$$a_T = \mathbf{A} \cdot \mathbf{T} = (-\mathbf{J} + 2\mathbf{K}) \cdot (\frac{\mathbf{I} + \mathbf{J} + 2\mathbf{K}}{\sqrt{6}}) = \frac{3}{\sqrt{6}}$$

Finally

$$a_N \mathbf{N} = \mathbf{A} - a_T \mathbf{T} = -\mathbf{J} + 2\mathbf{K} - \frac{3}{\sqrt{6}} \left(\frac{\mathbf{I} + \mathbf{J} + 2\mathbf{K}}{\sqrt{6}} \right) = \frac{1}{2} \left(-\mathbf{I} - 3\mathbf{J} + 2\mathbf{K} \right) ,$$

so $a_N = \sqrt{14}/2$.

3. Find the equation of the tangent plane to the surface $x^2 + y^2 + 3xy + 2xz = 5$ at the point (1,-1,3).

Solution. Looking at this as a level set f(x, y, z) = 5, we see that the normal to the tangent plane is

$$\nabla f = (2x + 3y + 2z)\mathbf{I} + (2y + 3x)\mathbf{J} + 2x\mathbf{K}$$

Evaluating at (1,-1,3), we get $\mathbf{N} = 5\mathbf{I} + \mathbf{J} + 2\mathbf{K}$, so the equation of the plane is

$$5(x-1) + (y+1) + 2(z-3) = 0$$
, or $5x + y + 2z = 10$.

4. Find the maximum value of 3x + 2y + z on the ellipsoid $x^2 + 2y^2 + 3z^2 = 1$.

Solution. Here we turn to Lagrange multipliers, with the objective function f(x, y, z) = 3x + 2y + z, and constraint $g(x, y, z) = x^2 + 2y^2 + 3z^2 = 1$. The gradients are

$$\nabla f = 3\mathbf{I} + 2\mathbf{J} + \mathbf{K}$$
, $\nabla g = 2x\mathbf{I} + 4y\mathbf{J} + 6z\mathbf{K}$

The Lagrange equations are (replacing ∇g by $\nabla g/2$).

$$3 = \lambda x$$
, $2 = 2\lambda y$, $1 = 3\lambda z$, $x^2 + 2y^2 + 3z^2 = 1$.

Solve for x, y, z in terms of λ , and put that in the last equation:

$$\frac{9}{\lambda^2} + \frac{2}{\lambda^2} + \frac{3}{9\lambda^2} = 1 \; .$$

This leads to $\lambda^2 = 34/3$, so $\lambda = \pm \sqrt{34/3}$. Clearly the maximum is found by taking the positive root, at which point we find

$$x = 3\sqrt{\frac{3}{34}}$$
, $y = \sqrt{\frac{3}{34}}$, $z = \frac{1}{3}\sqrt{\frac{3}{34}}$ and $f(x, y, z) = (9 + 2 + \frac{1}{3})\sqrt{\frac{3}{34}} = \sqrt{\frac{34}{34}}$

5. Find the center of mass of the lamina in the upper half plane bounded by the circle $x^2 + y^2 = 1$ if the density is $\delta(x, y) = x^2 + y^2$.

Solution. Since the region R and the density are symmetric about the line x = 0, $\bar{x} = 0$. To find \bar{y} , we compute in polar coordinates. The region is given by the equations $0 \le \theta \le \pi$, $0 \le r \le 1$, and $\delta = r^2$. Thus

$$Mass = \int \int_{R} \delta dA = \int_{0}^{\pi} \int_{0}^{1} r^{2} r dr d\theta = \frac{\pi}{4} ,$$
$$Mom_{\{y=0\}} = \int \int_{R} y \delta dA = \int_{0}^{\pi} \int_{0}^{1} r^{4} \sin \theta dr d\theta = \frac{1}{5} (-\cos \theta)|_{0}^{\pi} = \frac{2}{5}$$

Thus $\bar{y} = (2/5)/(\pi/4) = 8/(5\pi)$, and the center of mass is at $(0, 8/(5\pi))$.

6. Given the vector field $\mathbf{F}(x, y) = (y - x^3)\mathbf{I} + (x - y^3)\mathbf{J}$, a) find a function f whose gradient is \mathbf{F} . b) Calculate div \mathbf{F} .

Solution. Solve $\partial f/\partial x = (y - x^3)$: $f(x, y) = xy - x^4/4 + \phi(y)$ for some unknown function $\phi(y)$. Now set $\partial f/\partial y = x - y^3$:

$$x - \phi'(y) = x - y^3$$
, so that $\phi'(y) = -y^3$ and $\phi = -\frac{y^4}{4} + C$.

Thus

$$f(x,y) = xy - \frac{x^4}{4} - \frac{y^4}{4} + C$$
,

and div $\mathbf{F} = -3(x^2 + y^2)$.

7. Let D be the region in the upper half plane bounded by the circles $x^2 + y^2 = 1$, $x^2 + y^2 = 9$. Let C be the boundary of D traversed counterclockwise. Find

$$\int_C y^2 dx + 3xy dy \; .$$

Solution. By Green's theorem, this equals

$$\int \int_D (3y - 2y) dA = \int \int_D y dx dy$$

where D is the region in the upper half plane bounded by the circles of radius 1, 3 respectively. Using polar coordinates, this is

$$\int_{0}^{\pi} \int_{1}^{3} r \sin \theta r dr d\theta = -\cos \theta \Big|_{0}^{\pi} \cdot \frac{r^{3}}{3} \Big|_{1}^{3} = \frac{52}{3}$$

.

8. Let C be the circle $x^2 + y^2 = 16$, oriented counterclockwise. Calculate

$$\oint_C \frac{-y}{x^2 + y^2} dx + \frac{x}{x^2 + y^2} dy$$

Solution. We can't use Green's theorem, because the vector field is not defined at the origin, which is a point in the region bounded by C. So we calculate directly, using the parametrization

$$x = 4\cos\theta$$
, $y = 4\sin\theta$, $dx = -4\sin\theta d\theta$, $dy = 4\cos\theta d\theta$,

for $0 \le \theta \le 2\pi$. Since $x^2 + y^2 = 16$ on C we have

$$\oint_C \frac{-y}{x^2 + y^2} dx + \frac{x}{x^2 + y^2} dy = \frac{1}{16} \int_0^{2\pi} (-4\sin\theta)(-4\sin\theta d\theta) + (4\cos\theta)(4\cos\theta d\theta)$$
$$= \frac{1}{16} \int_0^{2\pi} 16d\theta = 2\pi \;.$$