## Mathematics 2210 Calculus III, Final Examination Jul 29,30,2003

You may use graphing calculators and tables of Integrals. You **MUST** show enough work to convince me that you know how to do the problems.

- 1. Find the equation of the line through the origin and orthogonal to the plane through the points P(2,-1,0), Q(1,2,1) and R(3,0,2).
- 2. A particle moves through space as a function of time:  $\mathbf{X}(t) = t\mathbf{I} + \ln t\mathbf{J} + t^2\mathbf{K}$ . Find the tangential and normal components of the acceleration when t = 1.
- 3. Find the equation of the tangent plane to the surface  $x^2 + y^2 + 3xy + 2xz = 5$  at the point (1,-1,3).
- 4. Find the maximum value of 3x + 2y + z on the ellipsoid  $x^2 + 2y^2 + 3z^2 = 1$ .
- 5. Find the center of mass of the lamina in the upper half plane bounded by the circle  $x^2 + y^2 = 1$  if the density is  $\delta(x, y) = x^2 + y^2$ .
- 6. Given the vector field  $\mathbf{F}(x,y) = (y-x^3)\mathbf{I} + (x-y^3)\mathbf{J}$ , a) find a function f whose gradient is  $\mathbf{F}$ . b) Calculate div  $\mathbf{F}$ .
- 7. Let D be the region in the upper half plane bounded by the circles  $x^2 + y^2 = 1$ ,  $x^2 + y^2 = 9$ . Let C be the boundary of D traversed counterclockwise. Find

$$\int_C y^2 dx + 3xy dy \ .$$

8. Let C be the circle  $x^2 + y^2 = 16$ , oriented counterclockwise. Calculate

$$\oint_C \frac{-y}{x^2 + y^2} dx + \frac{x}{x^2 + y^2} dy \ .$$