Calculus III Exam 2, Answers

You may use graphing calculators and a Table of Integrals. Each problem is worth 20 points. You MUST show your work. Just the correct answer is not sufficient for any points.

1. A conic in the plane is given by the equation

$$2x^2 - 2xy + y^2 + 2x - y = 100 .$$

a) What conic is it?

Answer. $B^2 - 4AC = (-2)^2 - 4(2)(1) = -4 < 0$, so it is an ellipse.

b) At what angle to the x-axis are the axes of the conic?

Answer. If θ is the angle of one of the axes with the *x*-axis, we know that

$$\tan(2\theta) = \frac{B}{A-C} = \frac{-2}{2-1} = -2$$
,

so $\theta = (1/2) \arctan(-2) = -.3524\pi$ radians. The other axis is perpendicular to this axis, so is at an angle $\theta + \pi/2 = .1476\pi$ radians.

2. Let $f(x, y) = x^2 - 3xy - y^2$.

Answer. a) $\nabla f = (2x - 3y)\mathbf{I} - (3x + 2y)\mathbf{J}$.

b) At (1,2), $\nabla f = -4\mathbf{I} - 7\mathbf{J}$. The direction of maximum increase is that of ∇f , so is

$$\mathbf{U} = -\frac{4\mathbf{I} + 7\mathbf{J}}{\sqrt{65}}$$

c) Find the equation of the plane tangent to the surface z = f(x, y) at the point (1,2,-9).

The equation of the tangent plane is $z - (-9) = \nabla f \cdot ((x-1)\mathbf{I} + (y-2)\mathbf{J})$, or

$$z + 9 = -4(x - 1) - 7(y - 2)$$

which simplifies to 4x + 7y + z = 9.

3. Let $f(x, y, z) = x \sin(yz)$. Let the curve γ be given by the equation $\mathbf{X}(t) = 2t\mathbf{I} - t\mathbf{J} + \mathbf{K}$. Let $g(t) = f(\mathbf{X}(t))$. Do the following calculations at the value $t = \pi/2$;

Answer. a) $\nabla f = \sin(yz)\mathbf{I} + xz\cos(yz)\mathbf{J} + xy\cos(yz)\mathbf{K}$,

which evaluates at $t = \pi/2$ to

$$\nabla f = \sin(-\frac{\pi}{2})\mathbf{I} + \pi\cos(-\frac{\pi}{2})\mathbf{J} - \frac{\pi^2}{2}\cos(-\frac{\pi}{2})\mathbf{K} = -\mathbf{I}.$$

b) $\frac{d\mathbf{X}}{dt} = 2\mathbf{I} - \mathbf{J}$,

c)
$$\frac{dg}{dt} = \nabla f \cdot \frac{d\mathbf{X}}{dt} = -2$$
.

4. Let $f(x, y) = 3x^2y + 3xy$.

Answer. a) $\nabla f = (6xy + 3y)\mathbf{I} + (3x^2 + 3x)\mathbf{J}$.

b) What are the critical points of
$$f$$
?

Answer. These are the solutions of the equations $f_x = 0$, $f_y = 0$, or

$$6xy + 3y = 0$$
, $3x^2 + 3x = 0$.

From the second equation, either x = 0 or x = -1. From the first equation, for both values of x we get y = 0. Thus the critical points are (0,0) and (-1,0).

c) What kind of critical points are they?

Answer. We have $f_{xx} = 6y$, $f_{xy} = 6x + 3$, $f_{yy} = 0$, so $D = -(6x + 3)^2 < 0$ at both points. Thus both points are saddle points.

5. Find the maximum value of *xy* on the curve $x^2 + 2y^2 = 1$.

Answer. Let f(x, y) = xy and $g(x, y) = x^2 + 2y^2$. Using Lagrange multipliers, the maximum is taken at some point where $\nabla f = \lambda \nabla g, g(x, y) = 1$. We differentiate to obtain

$$\nabla f = y\mathbf{I} + x\mathbf{J}$$
, $\nabla g = 2x\mathbf{I} + 4y\mathbf{J}$

so the Lagrange equations are

$$y = 2\lambda x$$
, $x = 4\lambda y$, $x^2 + 2y^2 = 1$.

Substituting the first in the second we obtain $x = 8\lambda^2 x$, so either x = 0 or $\lambda = \pm 8^{-1/2}$.

Case x = 0. From the last equation we find $y = \pm 2^{-1/2}$, and f(x, y) = 0.

Case $\lambda = \pm 8^{-1/2}$. Then $y = 2(8^{-1/2})x$; putting that in the last equation gives

$$x^2 + 2\frac{4}{8}x^2 = 1$$
, or $2x^2 = 1$

giving the solutions $x = \pm 2^{-1/2}$, $y = \pm 1/2$. The values of *f* at these points are

$$\pm \frac{1}{2\sqrt{2}}$$
 so the maximum is $\frac{1}{2\sqrt{2}}$,

taken at the points $\pm(1/\sqrt{2}, 1/2)$. Another way to go is to eliminate 2λ from the first two Lagrange equations;

this leads to

$$\frac{y}{x} = \frac{x}{2y} , \quad \text{or} \quad x^2 = 2y^2$$

Substituting this in the last equation gives $4y^2 = 1$, which leads easily to the solution.