Calculus III, Mathematics 2210-90

Examination 2, October 16,18, 2003

You may use graphing calculators and a Table of Integrals. Each problem is worth 20 points. You MUST show your work. Just the correct answer is not sufficient for any points.

1a. Write down an equation of a hyperbola whose major axis is the line y = x.

Solution. xy = 1 will do. So will any form of the type $Ax^2 + Bxy + Ay^2 = D$, with $B^2 > 4A^2$. Another idea would be to start with $u^2 - v^2 = 1$, and make the substitution u = x + y, v = x - y, which leads to 4xy = 1.

1b. Write down an equation of an ellipse (not a circle) whose major axis is the line y = x.

Solution. Any form of the type $Ax^2 + Bxy + Ay^2 = D$, with $B^2 < 4A^2$ will do. Another idea would be to start with $4u^2 + v^2 = 1$, and make the substitution u = x + y, v = x - y, which leads to $5x^2 + 6xy + 5y^2 = 1$.

- 2. Let $f(x,y) = x^2 + 3xy + 4y^2$.
- a) What is ∇f ?

$$\nabla f = (2x+3y)\mathbf{I} + (3x+8y)\mathbf{J} \ .$$

b) Find the equation of the line tangent to the curve f(x, y) = 14 at the point (2,1).

Solution. At \mathbf{X}_0 : (2,1), $\nabla f = 7\mathbf{I} + 14\mathbf{J}$. The equation of the line is $\nabla f \cdot (\mathbf{X} - \mathbf{X}_0) = 0$, which is 7(x-2) + 14(y-1) = 0, which simplifies to x + 2y = 4.

3. Let $w = x^2 - yz$. Let $\mathbf{X}(t) = e^t \mathbf{I} + e^{t+1} \mathbf{J} + e^{2t} \mathbf{K}$ describe the curve Γ . Find the formula for dw/dt along Γ as a function of t.

Solution. $\nabla w = 2x\mathbf{I} - z\mathbf{J} - y\mathbf{K}$, so, along Γ , in terms of $t, \nabla w = 2e^{t}\mathbf{I} - e^{2t}\mathbf{J} - e^{t+1}\mathbf{K}$. Now

$$\frac{d\mathbf{X}}{dt} = e^t \mathbf{I} + e^{t+1} \mathbf{J} + 2e^{2t} \mathbf{K} ,$$

and

$$\frac{dw}{dt} = \nabla w \cdot \frac{d\mathbf{X}}{dt} = 2e^{2t} - e^{3t+1} - 2e^{3t+1} = 2e^{2t} - 3e^{3t+1}$$

4. Let $f(x,y) = x^2y + 27y^2 + x$.

Solution. a) $\nabla f = (2xy+1)\mathbf{I} + (x^2+54y)\mathbf{J}$

b) What are the critical points of f?

Solution. We must solve the pair of equations 2xy + 1 = 0, $x^2 + 54y = 0$. The first gives y = -1/2x; substituting in the second gives $x^3 = 27$, so x = 3 and y = -1/6. The only critical point is (3,-12/6).

c) What kind of critical points are they?

Solution. We calculate $f_{xx} = -1/3$, $f_{xy} = 6$, $f_{yy} = 54$, so $f_{xx}f_{yy} - f_{xy}^2 = -54 < 0$, and the point is a saddle point.

5. Find the minimum value of $3x^2 + y^2$ on the curve $x^2 + xy = 1$.

Solution. We use the method of Lagrange multipliers. Let $f(x, y) = 3x^2 + y^2$, $g(x, y) = x^2 + xy$. We have

$$\nabla f = 6x\mathbf{I} + 2y\mathbf{J}$$
, $\nabla g = (2x + y)\mathbf{I} + x\mathbf{J}$.

The equations to solve are

$$3x = \lambda(2x + y)$$
, $y = \lambda x$, $x^2 + xy = 1$

Substitute the second equation in the first to get $3x = \lambda(2x + \lambda x)$. Since x = 0 does not solve the last equation, we can cancel x to get $3 = 2\lambda + \lambda^2$, which has the solutions $\lambda = 1, -3$. The case $\lambda = 1$ gives us y = x; substitute that in the last equation to get $2x^2 = 1$, or $x = y = \pm 1/\sqrt{2}$, and f(x, y) = 2. The case $\lambda = -3$ leads to y = -3x; putting that in the last equation gives $-x^2 = 1$, an impossibility. Thus the only possible solution is at the first point. Since f is always positive, it must have a minimum, so since 2 is the only candidate, it is the minimum.