Calculusllli
Exam 1, Summer 2003, Answers

1.V =3l -J, W =2l +5J are two vectors in the plane.
a) Find the angle betweahandWw.

Answer. Leta be the angle. Then
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soa = 1.512 radians, or 86.63
b) Find the vector which is orthogonal Y6and counterclockwise frow/.

Answer. SinceW is counterclockwise fron¥, and the angle is less than a right angle, the vector we seek
isVL =1+3J.

¢) Find the area of the parallelogram spanned/tandWw.

Answer. The area i/ -W =2+ 15=17.

2. A particle moves in the plane according to the equation
1
X(t) = Intl + ?J

Find the velocity, speed, acceleration, tangent and normal vectors, and normal acceleration of the particle at
any timet.

Answer. DifferentiateX(t):
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3. Find the equation of the plane through the point (0,-1,3) which is parallel to the veet@}+ 2K and
3l -2 +K.

Answer. The normal to the plane is the cross product of the two given vectors. This is
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TakingX, = (0)I —J+ 3K, the equation i$X — X ;) - N = 0, which comes to2+ 5y +4z=7.



4. Find the distance of the poi(®,0,1) from the line whose symmetric equations are

X—=2 y+1 z-1
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Answer. LetQ be the given pointP = 21 —J+ K is a point on the line, and = 3l +4J — 2K is a vector in
the direction of the line. The® — P = —J, and the desired distance is
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5. A particle moves in space according to the formula
X(t) =€l +e?) K.
Find the normal acceleration at the pdint O.

Answer. Differentiate;
V() =1+282-K, A(t)=€l+4e*].

Now, evaluate at = 0 (don’t work with the general formulas!) to find
V=I14+2J-K,A=1+4].

Then|V| = /6 and sincd = V/|V| we have
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soay=|A—(A-T)T|=/7/2.



