
Calculus III
Exam 1, Summer 2003, Answers

1. V = 3I�J; W = 2I+5J are two vectors in the plane.
a) Find the angle betweenV andW.

Answer. Let α be the angle. Then
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soα = 1:512 radians, or 86.63Æ.
b) Find the vector which is orthogonal toV and counterclockwise fromW.

Answer. SinceW is counterclockwise fromV, and the angleα is less than a right angle, the vector we seek
is V? = I+3J.

c) Find the area of the parallelogram spanned byV andW.

Answer. The area isV? �W = 2+15= 17.

2. A particle moves in the plane according to the equation

X(t) = lntI+ 1
t

J

Find the velocity, speed, acceleration, tangent and normal vectors, and normal acceleration of the particle at
any timet.
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3. Find the equation of the plane through the point (0,-1,3) which is parallel to the vectorsI�2J+2K and
3I�2J+K.

Answer. The normal to the plane is the cross product of the two given vectors. This is

N = det
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1A= 2I+5J+4K :
TakingX0 = (0)I�J+3K, the equation is(X�X0) �N= 0, which comes to 2x+5y+4z = 7.



4. Find the distance of the point(2;0;1) from the line whose symmetric equations are

x�2
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= y+1
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= z�1�2

Answer. Let Q be the given point.P = 2I�J+K is a point on the line, andL = 3I+4J�2K is a vector in
the direction of the line. ThenQ�P =�J, and the desired distance isj�J�LjjLj =r13
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:

5. A particle moves in space according to the formula

X(t) = etI+ e2t J� tK :
Find the normal acceleration at the pointt = 0.

Answer. Differentiate;
V(t) = etI+2e2t J�K ; A(t) = etI+4e2t J :

Now, evaluate att = 0 (don’t work with the general formulas!) to find

V = I+2J�K; A = I+4J :
ThenjVj=p
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soaN = jA� (A �T)Tj=p7=2 :


