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2210-90 Exam 1
Summer 2014

v KEY

Instructions. Show all work and include appropriate explanations when space is provided. Correct
answers unaccompanied by work may not receive full credit. Page 5 is blank in case you need extra paper.
Please circle your final answers.

1. (14pts) Consider the vectors u = (—1,5,2) and v = (2,2, —-3). Find

(a) (2pts) 2u — 3v —
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(¢) (2pts) u-v
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(d) (4pts) the scalar projection of u onto v. Recall, this is the dot product of u with the unit vector

pointing in the same direction as v. T
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2. (8pts) Find an equation of the plane containing the point (0,5, —4) which is perpendicﬁlar.to the line

r(t) = (1,—1,4) + (3, -2, 1)
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3. (6pts) Find the equation of the largest sphere centered at (2, 3,5) that is completely contained in the
first octant. Note: the first octant is where 2 > 0, y > 0, and z > 0.
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4. (17pts) Suppose a particle’s position at time ¢ is given by the curve
r(t) =sinti — 5tj — costk.

(a) (2pts) Find the velocity v(t) = r'(¢) of the particle at time t.

L r’/f)=cost’l‘f5f+5mt;

(b) (3pts) Find the arc length of the curve between times t =0 and ¢t = 3.
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(c) (2pts) Find the acceleration a(t) = r”(t) of the particle at time ¢.
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(d) (2pts) Find the unit tangent vector T(t) =
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(e) (3pts) Find the principal unit normal vector N(t) = FRCIE
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(f) (5pts) Find the curvature tik(t) = “rl—l(ltr),z%-]%m of the particle’s path at time £. ; (‘)'//V; '
ey 1) J b= 5oy
I = s )
rlE)x pst <S5 smb | Guge ] - - Ssmbp Y
g sk 0 cos | | =2 ritnxr ol = rsr1 =2e) e
e 1 € i
Fi) = (/‘:e) (26 i

23



5. (12 pts) Match the equation with the type of surface it describes by writing the appropriate capital
letter (A-F) in the provided blank. Each answer will be used exactly once.

(a) E ?+y?-z2=1
(b) B 3zt +y? +3:22 =1
(c)_a 2?4+ -z =1
d) € 322432 -z=0
(e) A 224+2y2-22=0
(f)_L 24y -2=0
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(Images taken from page 808 of Stewart, Calculus-FEarly Transcendentals, Ge)

6. (10pts) Match the function with the description of its level sets (z = constant) by writing the appro-
priate capital letter (A-E) in the provided blank. Each letter should be used exactly once.

z=2x% 49> A a collection of parallel lines
z=+x2+ 2y -1 B a collection of concentric circles
C a collection of hyperbolas

D a collection of lines through the origin
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E a collection of ellipses

7. (9pts) Convert between Cartesian, cylindrical, and spherical coordinates as indicated

(a) Find the Cartesian coordinates of the point with spherical coordinates (p, 8, ¢) = (V/2, =,
T ;I_ y = ___l_ z = _D__

(b) Find the Cartesian coordinates of the point with cylindrical coordinates (r,8,z) = (5, §, —2)

S8 v Lo Y S

(c) Find the cylindrical coordinates of the point with Cartesian coordinates (z,y.z) = (3, -3.1)

o -r: T ]
r = 3uz- =__19 ar :,' z= _J__
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8. (12pts) Evaluate the following limits. Show your work. If they do not exist, write ‘DNE’ and explain
why.
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Hint: Use polar coordinates.

(c) lim
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9. (12pts) Consider the function

fz,y) = y*sinz + y® — xcosy.

(a) (6pts) Find the equation of the tangent plane to the graph of z = f(z,y) at the point (0, , 7).

’F (?Kj) J COSX—CL"SJ =} ﬁ(oﬁr): T [05(0)--Ca$(v) ’77'1‘}'1
[, 2 Ty0ag) = 2genn £yt sy 9 ylar) < Bnante) 37 osu) =5

&=
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(b) (6pts) Find the following second derivatives:

2
Z- i fzr(rvy) == - j sin X

é: 2 i fyy(zy) = 2%5inyx f’éj —i—st.y

z il foy(z,y) = Zj oS x +5 inj
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