2210-90 Exam 1 Summer 2014

Name _____

Instructions. Show all work and include appropriate explanations when space is provided. Correct answers unaccompanied by work may not receive full credit. Page 5 is blank in case you need extra paper. Please circle your final answers.

- 1. (14pts) Consider the vectors $\mathbf{u} = \langle -1, 5, 2 \rangle$ and $\mathbf{v} = \langle 2, 2, -3 \rangle$. Find
 - (a) (2pts) 2u 3v
 - (b) (2pts) $||\mathbf{u}||$
 - (c) (2pts) $\mathbf{u} \cdot \mathbf{v}$
 - (d) (4pts) the scalar projection of \mathbf{u} onto \mathbf{v} . Recall, this is the dot product of \mathbf{u} with the unit vector pointing in the same direction as \mathbf{v} .

(e) (4pts) $\mathbf{u} \times \mathbf{v}$

2. (8pts) Find an equation of the plane containing the point (0, 5, -4) which is perpendicular to the line

$$\mathbf{r}(t) = \langle 1, -1, 4 \rangle + t \langle 3, -2, -1 \rangle$$

3. (6pts) Find the equation of the largest sphere centered at (2,3,5) that is completely contained in the first octant. Note: the first octant is where $x \ge 0$, $y \ge 0$, and $z \ge 0$.

4. (17pts) Suppose a particle's position at time t is given by the curve

$$\mathbf{r}(t) = \sin t \mathbf{i} - 5t \mathbf{j} - \cos t \mathbf{k}.$$

- (a) (2pts) Find the velocity $\mathbf{v}(t) = \mathbf{r}'(t)$ of the particle at time t.
- (b) (3pts) Find the arc length of the curve between times t = 0 and t = 3.
- (c) (2pts) Find the acceleration $\mathbf{a}(t) = \mathbf{r}''(t)$ of the particle at time t.
- (d) (2pts) Find the unit tangent vector $\mathbf{T}(t) = \frac{\mathbf{v}(t)}{||\mathbf{v}(t)||}$.
- (e) (3pts) Find the principal unit normal vector $\mathbf{N}(t) = \frac{\mathbf{T}'(t)}{||\mathbf{T}'(t)||}$.
- (f) (5pts) Find the curvature $\kappa(t) = \frac{||\mathbf{r}'(t) \times \mathbf{r}''(t)||}{||\mathbf{r}'(t)||^3}$ of the particle's path at time t.

- 5. (12 pts) Match the equation with the type of surface it describes by writing the appropriate capital letter (A-F) in the provided blank. Each answer will be used exactly once.
 - (a) _____ $x^2 + y^2 z^2 = 1$ $3x^2 + y^2 + 3z^2 = 1$ (b) _____
 - (c) _____ $x^2 + y^2 - z^2 = -1$
 - (d) _____ $3x^2 + y^2 - z = 0$
 - (e) _____ $x^2 + 2y^2 - z^2 = 0$
 - $-x^2 + y^2 z = 0$ (f) _____

(Images taken from page 808 of Stewart, Calculus-Early Transcendentals, 6e)

6. (10pts) Match the function with the description of its level sets (z = constant) by writing the appropriate capital letter (A-E) in the provided blank. Each letter should be used exactly once.

 $z = x^2 + y^2$	${\bf A}$ a collection of parallel lines
 $z = \sqrt{x^2 + 2y^2 - 1}$	${\bf B}$ a collection of concentric circles
 $z = \frac{y}{x}$	${\bf C}$ a collection of hyperbolas
 $z = x^2 - y^2$	${\bf D}$ a collection of lines through the origin
 z = 3x - 2y	${\bf E}$ a collection of ellipses

7. (9pts) Convert between Cartesian, cylindrical, and spherical coordinates as indicated

x =_____

(a) Find the Cartesian coordinates of the point with spherical coordinates $(\rho, \theta, \phi) = (\sqrt{2}, \frac{3\pi}{4}, \frac{\pi}{2})$

x = _____ *y* = _____ *z* = ____

(b) Find the Cartesian coordinates of the point with cylindrical coordinates $(r, \theta, z) = (5, \frac{\pi}{6}, -2)$ *z* = _____

(c) Find the cylindrical coordinates of the point with Cartesian coordinates (x, y, z) = (3, -3, 1)

 $\theta =$ _____ z =_____ *r* = _____

y = _____

8. (12pts) Evaluate the following limits. Show your work. If they do not exist, write 'DNE' and explain why.

(a)
$$\lim_{(x,y)\to(0,0)} \frac{e^{x+y}+6}{1-x}$$

(b)
$$\lim_{(x,y)\to(0,0)} \frac{2x-3y}{x-y}$$

(c)
$$\lim_{(x,y)\to(0,0)} \frac{x^3 - 2y^4}{x^2 + y^2}$$

Hint: Use polar coordinates.

9. (12pts) Consider the function

$$f(x,y) = y^2 \sin x + y^3 - x \cos y.$$

(a) (6pts) Find the equation of the tangent plane to the graph of z = f(x, y) at the point $(0, \pi, \pi^3)$.

- (b) (6pts) Find the following second derivatives:
 - i. $f_{xx}(x,y) =$ ______
 - ii. $f_{yy}(x, y) =$ _____
 - iii. $f_{xy}(x,y) =$ _____