2210-90 Exam 1 Spring 2014

Name _____

Instructions. Show all work and include appropriate explanations when space is provided. Correct answers unaccompanied by work may not receive full credit. Page 5 is blank in case you need extra paper. Please circle your final answers.

- 1. (15pts) Consider the vectors $\mathbf{u} = \langle 1, -1, 5 \rangle$ and $\mathbf{v} = \langle 2, -2, 3 \rangle$. Find
 - (a) (2pts) 5**u**
 - (b) (2pts) $\mathbf{u} \mathbf{v}$
 - (c) (2pts) $||\mathbf{u}||$
 - (d) (2pts) The unit vector which points in the same direction as **u**
 - (e) (2pts) $\mathbf{u} \cdot \mathbf{v}$
 - (f) (2pts) Find the angle θ between **u** and **v**. Answer in the form $\theta = \cos^{-1}(x)$.
 - (g) (3pts) $\mathbf{u} \times \mathbf{v}$

2. (5pts) Find an equation of the plane containing the point (1, -1, 3) which **never** intersects the plane

$$x - 2y + 5z = 9$$

3. (6pts) The line segment connecting (0, 2, -4) to (2, 2, 6) is a diameter of a sphere. Find an equation of this sphere.

4. (12pts) Suppose a particle's position at time t is given by the curve

$$\mathbf{r}(t) = 6t\mathbf{i} + 9\mathbf{j} + (t^2 + 1)\mathbf{k}.$$

- (a) (2pts) Find the velocity $\mathbf{v}(t) = \mathbf{r}'(t)$ of the particle at time t.
- (b) (3pts) Set up an integral which gives the arc length of the curve between times t = 0 and t = 7. Do not evaluate.
- (c) (2pts) Find the acceleration $\mathbf{a}(t) = \mathbf{r}''(t)$ of the particle at time t.
- (d) (5pts) Find the curvature $\kappa(t) = \frac{||\mathbf{r}'(t) \times \mathbf{r}''(t)||}{||\mathbf{r}'(t)||^3}$ of the particle's path at time t.

5. (6pts) Suppose the velocity of a particle is given by

$$\mathbf{v}(t) = \langle \sin t, e^t, 3\cos t \rangle.$$

If the particle's initial position is $\mathbf{r}(0) = \langle 1, 1, 3 \rangle$, where is the particle at time $t = \pi$?

6. (14pts) Match the equation with the type of surface it determines by writing the appropriate capital letter (**A-G**) in the provided blank. Each letter should be used exactly once.

 z = 9x - y + 7	${f A}$ Elliptic Paraboloid
 $y = x^2 + 5z^2$	${f B}$ Ellipsoid
 $2x^2 + y^2 + 9z^2 = 3$	${\bf C}$ Hyperboloid of one sheet
 $y^2 - x^2 - z = 1$	${\bf D}$ Hyperboloid of two sheets
 $x^2 + y^2 + z^2 = 3$	${\bf E}$ Hyperbolic Paraboloid
 $x^2 + 2y^2 - z^2 = 1$	${f F}$ Plane
 $x^2 - 2y^2 - z^2 = 1$	G Sphere

- 7. (8pts) Match the equation and the description of the surface by writing the appropriate capital letter (**A-D**) in the provided blank. Each letter should be used exactly once.
 - (a) _____ In cylindrical coordinates, the surface r = 4.
 - (b) _____ In cylindrical coordinates, the surface $r^2 z^2 = 4$.
 - (c) _____ In spherical coordinates, the surface $\phi = \frac{\pi}{2}$.
 - (d) _____ In spherical coordinates, the surface $\rho = 4$.
 - A a sphere.
 - B a plane.
 - C a cylinder.
 - D a hyperboloid.

- 8. (9pts) Convert between Cartesian, cylindrical, and spherical coordinates as indicated. Please simplify as much as possible.
 - (a) Find the cylindrical coordinates of the point with Cartesian coordinates (-1, -1, 5)

 $r = _$ $\theta = _$ $z = _$

(b) Find the spherical coordinates of the point with Cartesian coordinates $(\sqrt{2}, \sqrt{2}, 2\sqrt{3})$

(c) Find the Cartesian coordinates of the point with cylindrical coordinates $(2, -\frac{\pi}{3}, \sqrt{3})$

 $x = _$ ____ $y = _$ ____ $z = _$ ____

9. (12pts) Evaluate the following limits. If they do not exist, write 'DNE' and explain why.

(a)
$$\lim_{(x,y)\to(0,0)} \ln(x^2 + y^2 + 1)$$

(b)
$$\lim_{(x,y)\to(0,0)} \frac{(x+2y)^2}{x^2+4y^2}$$

(c)
$$\lim_{(x,y)\to(0,0)} \frac{y^3}{x^2+y^2}$$
 Hint: Use p

int: Use polar coordinates.

10. (13pts) Consider the function $\mathbf{10}$

$$f(x,y) = xe^{-3y} + x^2y^2.$$

(a) (7pts) Find the equation of the tangent plane to the graph of z = f(x, y) at the point (1, 0, 1).

(b) (6pts) Find the following second derivatives:

- i. $f_{xx}(x,y) =$ ______
- ii. $f_{yy}(x,y) =$ _____
- iii. $f_{xy}(x,y) =$ ______