2210-90 Exam 1 Fall 2012

Name _____

Instructions. Show all work and include appropriate explanations when necessary. Please try to do all all work in the space provided. Page 5 is blank in case you need extra paper. Please circle your final answer.

- 1. (21pts) Consider the vectors $\mathbf{u} = \langle 1, 2, -3 \rangle$ and $\mathbf{v} = \langle 1, 0, 2 \rangle$. Find
 - (a) (2pts) u 5v
 - (b) (2pts) $||\mathbf{u}||$
 - (c) (2pts) The unit vector which points in the same direction as **u**
 - (d) (2pts) $\mathbf{u} \cdot \mathbf{v}$
 - (e) (1pt) Are \mathbf{u} and \mathbf{v} orthogonal? Circle one: YES NO
 - (f) (3pts) Find the angle θ between **u** and **v**.
 - (g) (3pts) $\mathbf{u} \times \mathbf{v}$
 - (h) (2pts) $\mathbf{u} \cdot (\mathbf{v} \times \mathbf{u})$
 - (i) (4pts) Find the vector projection of \mathbf{u} onto \mathbf{v}

2. (10pts) Find an equation for the plane which contains the points (1, 1, 0), (2, 2, -1), and (-3, 5, 2).

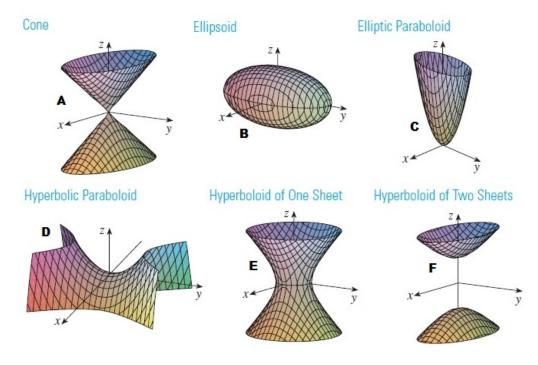
3. (8pts) Find the equation for the sphere which is centered at (-3, 4, 1) and contains the point (1,0,-1).

4. (8pts) Find a parametric equation for a line $\mathbf{r}(t)$ that passes through the point (2,1,3) at t = 0 and passes through the point (1, -4, 6) at t = 1.

5. (8pts) Find the arclength of the curve

$$\mathbf{r}(t) = t\mathbf{i} + \frac{1}{3}t^3\mathbf{j} + \frac{\sqrt{2}}{2}t^2\mathbf{k}.$$

for $0 \le t \le 2$.


6. (12pts) Suppose a particle's position at time t is given by the curve

 $\mathbf{r}(t) = t\mathbf{i} + \sin t\mathbf{j} + \cos t\mathbf{k}.$

- (a) (2pts) Find the velocity $\mathbf{v}(t)$ of the particle at time t.
- (b) (2pts) Find the acceleration $\mathbf{a}(t)$ of the particle at time t.
- (c) (6pts) Find the curvature $\kappa(t)$ of the particle's path at time t.

- (d) (2pts) For all time t, this curve is contained on what type of surface? Circle the correct letter
 - A a sphere of radius 1 centered at the origin
 - B a cylinder of radius 1 parallel to the z-axis
 - C a paraboloid opening in the positive z direction

- 7. (18 pts) Match the equation with the type of surface it describes by writing the appropriate capital letter (A-F) in the provided blank (Note: The last three equations are written using cylindrical coordinates).
 - $z = y^2 x^2$ (a) _____ (b) _____ $z^2 = x^2 + y^2$ (c) _____ $4x^2 + y^2 + 4z^2 = 1$ (d) _____ $-x^2 - 5y^2 + z^2 = 1$ (e) _____ $z = 5x^2 + y^2$ (f) _____ $3x^2 + y^2 - 5z^2 = 3$ $z = r^2$ (g) _____
 - (h) _____
 - |z| = r $r^2 z^2 = 1$ (i) _____

8. (15pts) Convert between Cartesian, cylindrical, and spherical coordinates as indicated (a) Find the cylindrical coordinates of the point with Cartesian coordinates (2, -2, 3)

r = _____ $\theta =$ _____ *z* = _____

(b) Find the spherical coordinates of the point with Cartesian coordinates (0, 5, 0)

(c) Find the Cartesian coordinates of the point with spherical coordinates $(3, \frac{\pi}{6}, \frac{3\pi}{4})$

 $\theta = _$

 $\phi =$ _____

 $\phi =$ _____

$$x =$$
 $y =$ $z =$

(d) Find the Cartesian coordinates of the point with cylindrical coordinates $(2, -\frac{\pi}{3}, -5)$ *y* = _____ *x* = _____ *z* = _____

- (e) Find the spherical coordinates of the point with cylindrical coordinates $(1, -\frac{\pi}{4}, 0)$
 - $\theta =$ _____ $\rho =$ _____

 $\rho =$ _____