
CHAPTER 6

Transcendental Functions

�
6.1. The Exponential Function

In many dynamical processes we are interested in studying the development of a variable as time pro-
gresses where the laws governing the process do not change over time. For example: (1) growth of a
bacteria culture, (2) spread of an epidemic, (3) decay of a radioactive material, (4) cooling of a hot metal
thrust into water, (5) growth of an interest bearing investment fund. Let x � x � t � be the variable in such a
process, where t represents time. In the above examples x would be (1) the mass of the bacteria, (2) the
number of infected people, (3) the remaining mass of the original material, (4) the difference between
the temperature of the metal and the ambient temperature, (5) the value of the fund. These are examples
of growth processes. In studying such processes we consider the per unit rate of growth:

(6.1) r � x ��� t �
x � t ���

which can be written as the differential equation

(6.2)
dx
dt

� rx �
In many of these processes, the per unit rate of growth r is constant. For our examples: (1) so long as
the source of nourishment is plentiful, we can expect the rate at which the bacteria develop to remain
unchanged, (3) the physical process of fission depends only on the nature of the atom and is the same
throughout the material and remains unchanged over time, (4) the rate at which heat is lost depends only
on the temperature difference at the interface and the thermal properties of the material, (5) the growth
of an investment account is the interest rate, set periodically by the bank. As for (2), the rate of spread
of an epidemic depends upon the nature of the disease, and may depend on time, mortality rate as well
as the rate of interaction between infected and non-infected people.

In case r is constant, equation 6.1 leads to a separable differential equation:

(6.3)
dx
x
� rdt

which we do not yet know how to integrate. However, since 1 	 x is a continuous function (for x 
� 0),
there is a solution. We shall return to this integral later; the point here is that the differential equation 6.2
(or 6.3) has a solution.
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Definition 6.1 The exponential function, written x � t � � ert , is the solution of the differential equation
6.2 with value x � 0 � � 1.

If r
� 0, r is called the growth rate; if r � 0, it is the decay rate. More precisely, the function ert is

defined by the conditions

(6.4)
d
dt

ert � rert

� er0 � 1 �

The exponential function, like the trigonometric functions, is a transcendental function. These are func-
tions which cannot be expressed as a quotient of polynomials; in this sense they transcend rational
functions. In due course, we shall find ways to calculate approximate values of the transcendental func-
tions; for us now it suffices to know that these calculations have been done and are incorporated into our
calculators.

Proposition 6.2 The solution of the differential equation x ��� t � � rx � t � , with initial value x � 0 � � x0 is

(6.5) x � t � � x0ert �

To verify this, we show that the function defined by 6.5 solves this initial value problem. First,
x � 0 � � x0er0 � x0. Differentiating:

(6.6) x � � t � � x0
d
dx

ert � x0rert � rx � t � �

Example 6.1 $500 is deposited in an account, continuously compounded at an interest rate of 5% per
year. What is the value of the account after 5 years?

Let x � t � be the value of the fund at time t. Then x � 0 � � 500. The phrase continuously compounded
tells us that the fund grows continuously at the given rate, so x satisfies the differential equation 6.2 with
r � 0 � 05. The solution then is

(6.7) x � t � � 500e0 � 05t �

At t � 5, we calculate: e � 05 � 5 � � e0 � 25 � 1 � 284, so x � 5 � � 500 � 1 � 284 � � 642 � 01 dollars.

Example 6.2 According to the census, the US population in 2000 was 281.4 million. The growth rate
over the preceding decade was 0.1235. Assuming that growth rate continues during the present century,
what will be the US population in 2050 ?

Let x � t � be the population of the US in millions, where t is the number of decades after 2000. Then
x � 0 � � 281 � 4, and Proposition 6.2 tells us

(6.8) x � t � � 281 � 4e � 0 � 1235 � t

At 2050, t � 5, so the answer is x � 5 � � 281 � 4e0 � 1235 � 5 � � 521 � 8 million.

Example 6.3 The radioactive isotope 128I has a decay rate of 0.0279 per minute. How many grams of
an initial 100g supply of 128I remain after 20 minutes?
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Let x � t � be the amount of 128I present after t minutes. The information we are given is that x � 0 � �
100 g and x � t � satisfies the differential equation

(6.9)
dx
dt

��� 0 � 0279x � t � �

Thus, by Proposition 6.2, x � t � � 100e ��� 0 � 0279 � t, and the answer is

(6.10) x � 20 � � 100e � 0 � 0279 � 20 � � 57 � 23 g �

We can come upon a way to calculate the exponential function by starting with a comparison of
continuously compounded interest with other ways of compounding interest. Suppose I deposit one
dollar in a bank account with an interest rate of 10% per year. If the rate is simple, that is, it is paid out
once only at the end of the year, then at that time the account will have $1.10. This is considered unfair
of the bank, since they have had the use of my dollar throughout the year and have been investing it over
and over, but they have transferred my share of the earning only at the end of the year. Suppose instead
the bank paid me twice a year, and the amount added to my account after six months were reinvested.
Then, after 6 months, I have $1.05. This is reinvested for another half year, so now, at the end of the year
I accrue another 1 � 05 � 0 � 05 � � 0 � 0525, so I will have $1.1025.

Now, suppose that the interest rate is r per year, and is paid in n periods per year. Then, in each period
I gain r 	 n of the amount I had at the beginning of the period. Let P � k � represent the amount I have at the
end of k periods. I start with P � 0 � dollars. The law of change here is P � k � � P � k � 1 ��� � r 	 n � P � k � 1 � :
my increment in any period is r 	 n times the amount at the beginning of the period. Thus

P � 1 � � P � 0 ��� P � 0 � � r 	 n � � P � 0 �	� 1 � r
n 
 �(6.11)

P � 2 � � P � 1 � � 1 � r
n 
 � P � 0 � � 1 � r

n 
 2

�(6.12)

and after k periods,

(6.13) P � k � � P � 0 � � 1 � r
n 
 k �

Now, let t be the time (in years) the fund is allowed to grow at this interest rate. The number of periods
is k � nt, so we can rewrite 6.13 as

(6.14) P � t � � P � 0 � � 1 � r
n 
 nt �

Now, as we let the number of periods get larger and larger, this approaches continuous compounding in
the limit; that is, formula 6.14 approaches the formula

(6.15) P � t � � P � 0 � ert �
We conclude, taking P � 0 � � 1:

Proposition 6.3

(6.16) ert � lim
n � ∞

� 1 � r
n 
 nt �
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In particular

(6.17) e � e1 � lim
n � ∞ � 1 � 1

n � n

�
which is approximately 2 � 71828 � � � .
Example 6.4 $500 is invested at 5% per year, compounded quarterly. What is the value of the fund at
the end of 5 years?

We use formula (5) with P � 0 � � 500 � r � 0 � 05 � n � 4 � t � 5:

(6.18) P � 5 � � 500 � 1 � 0 � 05
4 � 20

� 641 � 01 �

Notice that this is close to, but less than the answer to example 6.1: 642 � 01. If the compounding is done
only annually, then the answer would be 500 � 1 � 0 � 05 � 5 � 638 � 14. Since the result using simple interest
is just 600, clearly any kind of compounding is preferable, and quarterly compounding is already very
close to continuous compounding.

We use exponential notation to denote the exponential function y � ex because it obeys the rules of
exponents:

Proposition 6.4 For any two numbers A and B:

(6.19) a � eA � B � eA � eB

� b � eAB � � eA � B � c � e � A � 1
eA

Let’s start with c). Let y � 1 	 ex. Then, by the chain rule:

(6.20)
dy
dx

� � 1
� ex � 2

d
dx

ex � � 1
� ex � 2 ex � � 1

ex � � y �

Since y � 0 � � 1, y solves the initial value problem of Proposition 6.2 with r � � 1, so y � e � x; that is,
1 	 ex � e � x.
To show a), let B be a number, and consider y � ex � Be � x. By the product rule for differentiation:

(6.21)
dy
dx

� ex � B � � e � x ��� ex � Be � x � 0 �
so y is constant. But at x � 0, y � eB, so

(6.22) ex � Be � x � eB �
Now, replacing x by A, and using c), this says eA � B 	 eA � eB, which is a). b) is proven the same way:
differentiate the function y � � ex � B:

(6.23)
dy
dx

� B � ex � B � 1 � ex � B � ex � B �
and y � 0 � � 1, so y is the solution function of Proposition 6.2 with r � B.
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In particular, since ex � � e1 � x, we can think of the exponential function as the number e of 6.17 raised
to the xth power.

Proposition 6.5
a) The exponential function y � ex is a strictly increasing function.
b) limx � ∞ ex � � ∞; in particular en �

2n for all n.
c) limx � � ∞ ex � 0.

a) follows from the fact that ex � 0 for all x, so the derivative of ex is always positive. To see b), we first
observe, from the binomial expansion,

(6.24) � 1 � 1
n
� n � 1 � n

1
n
� � � � � 2 �

so in the limit e
�

2. Thus en �
2n for all n. Now, for c):

(6.25) lim
x � � ∞

ex � lim
x � ∞

e � x � lim
x � ∞

1
ex � 0 �

Since the second derivative of y � ex is again ex which is positive, the curve is always concave up.
From this information, we can easily sketch the graph of the exponential function (see figure 6.1). To
graph the function y � e � x, we just reflect in the y-axis (see figure 6.2).

Since the derivative of ex is itself, so is its indefinite integral:

Proposition 6.6
�

exdx � ex � C �

Example 6.5 Find
� 3

0
xex2

dx.

Let u � ex2
, so that (by the chain rule) du � 2xex2

dx. When x � 0, u � 1 and when x � 3 � u � e9.
Thus

(6.26)
� 3

0
xex2

dx � 1
2

� e9

1
du � 1

2
u ���

e9

1
� 1

2 � e9 � 1 � �
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�
6.2. The Logarithm

At what rate (compounded continuously) should I invest $500 so as to have $800 in the account at the
end of 6 years? If r is the unknown rate, the answer is given by solving the equation:

(6.27) 800 � 500e6r �
To answer this, we have to find the number a such that ea � 8 	 5. That is, we have to invert the operation
of exponentiation. This is done by the logarithm.

Definition 6.2 Given a positive number x, the natural logarithm of x, denoted y � lnx is that number y
such that ey � x.

Any positive number x lies between 0 and ∞, so by the intermediate value theorem applied to the
exponential function and Proposition 6.5, there is a number y such that ey � x. Since the exponential
function is strictly increasing, there is only one such number. Thus the above definition makes sense.
The logarithm is a transcendental function whose values have been calculated and are stored in our
calculators.

Example 6.6 To conclude the above discussion, we solve 6.14: e6r � 8 	 5, so 6r � ln � 8 	 5 � � 0 � 47, so
r � 0 � 47 	 6 � 0 � 078: the interest rate must be 7.8%.

Example 6.7 How long does it take for a quantity of 128I to be reduced to half its size?
Referring to example 6.3, if we start with an amount P � 0 � of 128I , the amount we have after t

minutes is P � t � � P � 0 � e � � 0 � 0279 � t To solve our problem we find t such that 0 � 5P � 0 � � P � 0 � e � � 0 � 0279 � t , or
0 � 5 � e � 0 � 0279 � t This leads to 0 � 0279t � � ln � 1 	 2 � or t � 24 � 84 minutes. This time is called the half-life
of 128I.

Example 6.8 The rate of decay of the radioactive isotope of carbon (14C) is 1 � 211 � 10 � 4 per year. In
how many years will it take a certain amount of 14C to be reduced by 10%?

Let C � t � represent the amount of 14C in t years. We can take C � 0 � � 1, and the question is: for what
T is C � T � � 0 � 9? Since C � t � satisfies the differential equation

(6.28) C � � t � � � 1 � 211 � 10 � 4C � t � �
We conclude (Definition 6.4)

(6.29) C � t � � e � 1 � 211 � 10 � 4t

so we must solve

(6.30) 0 � 9 � e � 1 � 211 � 10 � 4T

Then

(6.31) T � ln � 0 � 9 �� 1 � 211 � 10 � 4 �
� 0 � 1054� 1 � 211

� 104 � 870 years �

Example 6.9 At the time an organic material is buried, its 14C content ceases to be replenished by
cosmic radiation, so is subject only to the radioactive decay, as described in example 6.8. Suppose the
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carbon content of a fossil is discovered to contain 84% of the amount of 14C had it not been buried. How
old is it?

Let time t � 0 represent the time the fossil was buried, and T the number of years since then. If we
take P � 0 � � 1, then P � T � � 0 � 84, so we must solve the equation

(6.32) 0 � 84 � e � 1 � 211 � 10 � 4T

�
or

(6.33) T � ln � 0 � 84 �� 1 � 211 � 10 � 4 �
� 0 � 1744� 1 � 211

� 104 � 1440 years �

Example 6.10 The half life of a radioactive element is the time it takes for any amount to decrease to
half its original size. To find the half-life T of 14C, we solve

(6.34)
1
2
� e � 1 � 211 � 10 � 4T �

The answer is T � ln2 	 � 1 � 211 � 10 � 4 � � 5724 years.

We now look into the properties of the logarithmic function:

Proposition 6.7
d
dx

lnx � 1
x
�

Let y � lnx, so that x � ey. Taking differentials: dx � eydy, so

(6.35)
dy
dx

� 1
ey �

1
x
�

The properties (Proposition 6.4) of the exponential function translate into properties of the logarithm:

Proposition 6.8 For any two positive numbers A and B:
a) ln � AB � � lnA � lnB
b) ln � AB � � B � lnA �
c) ln 1

A � � lnA �
For c), let a � lnA, so that A � ea. Then, from proposition 6.4: e � a � 1 	 ea � 1 	 A, so ln � 1 	 A � �� a � � lnA. For a), let b � lnB, so that B � eb. Then, again, from proposition 6.4: AB � eaeb � ea � b,

so a � b � ln � AB � , which is a). b) can be shown in the same way.

Proposition 6.9
a) lnx is a strictly increasing function of x for x � 0.
b) limx � ∞ lnx � ∞
c) limx � 0 lnx ��� ∞

These follow directly from the corresponding assertions for the exponential (Prop 6.5). This infor-
mation suffices to sketch the graph of y � lnx (figure 6.3).

We note that for x � 0, the function y � ln
�
x

� � ln � � x � satisfies the differential equation dy 	 dx � 1 	 x:

(6.36)
d
dx

� ln � � x � � � 1� x
� � 1 � � 1

x
�
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Figure 6.3: y � lnx
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This then tells us what the indefinite integral of 1 	 x is (for x 
� 0 � :

Proposition 6.10
�

dx
x
� ln

�
x

� � C for x 
� 0 �

Example 6.11
� 5

2
� 2x � 1 � � 1dx � ?

Let

(6.37) u � 2x � 1 � du � 2dx �
At x � 2 � u � 5, and at x � 5 � u � 11. Thus

(6.38)
� 5

2
� 2x � 1 � � 1 dx � 1

2

� 11

5

du
u
� 1

2
lnu ���

11

5
� 1

2
ln

11
5
�

Example 6.12
�

ex

ex � 1
dx � ?

Let u � ex

� du � exdx. Then

(6.39)
�

ex

ex � 1
dx �

�
du
u
� lnu � ln � ex � 1 ��� C �

Example 6.13 Find the solution of the differential equation dy 	 dx � xy, y � 0 � � 1 �
The equation is separable and becomes: dy 	 y � xdx. Integrating both sides gives lny � x2 	 2 � C.

Substituting x � 1 � y � 0 we find ln1 � 0 � C, so C � 0. Thus the solution is given by

(6.40) lny � x2 	 2 � or y � ex2 � 2 �

Inhibited growth
The growth equation dx 	 dt � rx does not really work for biological populations, since they do not

appear to continue to grow exponentially without bound. In fact, there are always factors present which



�
6.2 The Logarithm 97

cause the growth rate to decrease as the population increases. One such is the competition over nutrient:
the growth rate of bacteria in an agar dish diminishes as the population increases. A good model for this
is to let the growth rate r decrease linearly as a function of x: r � a � bx, where a is the genetic growth
factor, and b is the inhibiting factor. In this model, the growth equation is replaced by

(6.41)
dx
dt

� � a � bx � x �

Notice that if x � a 	 b we have dx 	 dt � 0, so there is no growth. This is called the stable population.
Equation 6.41 (called the logistic equation) is separable and can be rewritten

(6.42)
dx

� a � bx � x � dt �

To solve this we need a little algebra:

(6.43)
1

� a � bx � x � 1
a

�
1
x
� b

a � bx �
so

(6.44)
�

dx
� a � bx � x �

1
a

�
dx
x
� b

a

�
dx

a � bx
� 1

a
� lnx � ln � a � bx � ��� C �

Thus 6.42 becomes

(6.45) t � C � 1
a

ln � x
a � bx �

or, after exponentiating, Keat � x 	 � a � bx � . If we solve for x in terms of t, we obtain

(6.46) x � aKeat

1 � bKeat �
aK

bK � e � at �

Since dx 	 dt � x � a � bx � , this function is increasing in the interval x � a 	 b, and is decreasing for x
�

a 	 b.
Finally, from the second form in 6.46, we see that x � a 	 b as t � � ∞. In figure 6.4, we have drawn
three typical solutions of the logistic differential equation.

Figure 6.4: The logistic equation.
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Example 6.14 A certain bacterium grows at the growth rate of 80% per hour. In a particular agar dish,
the inhibiting factor is 0.002. What is the stable population? If 100 g of the bacterium is put in the dish,
what will be the size of the population after 2 hours?

Here a � 0 � 8, and b � 0 � 002, and the growth equation is

(6.47) x � � � 0 � 8 � 0 � 002x � x �
The stable populations is 0.8/0.002 = 400 g. To find the population after 2 hours, we have to solve for K
in equation 6.46:

(6.48) x � 0 � 8K
0 � 002K � e � 0 � 8t �

at the initial value x � 100 when t � 0. This leads to the equation 100 � 0 � 002K � 1 � � 0 � 8K, which solves
to K � 166 � 7. Then

(6.49) x � 2 � � 0 � 8 � 166 � 7 �
0 � 002 � 166 � 7 ��� e � 0 � 8 � 2 � �

giving x � 2 � � 249 � 25 g. If there were no inhibition to the growth the population would be 100e1 � 6 � 495
g.

Example 6.15 In Example 6.2, we saw that the growth rate of the US population over the decade 1990-
2000 was 0.1235. However, if we looked at the census over the previous few decades, we would find that
the growth rate was decreasing. If we attribute that to an inhibiting factor, we would be able to estimate
that factor to be about 0.00032. Given these data, what is the stable population of the US, and what will
the population be in 2050 according to this model?

Let P � t � be the US population t decades after 2000. We start with the differential equation P � �
� 0 � 1235 � 0 � 00032P � P. The stable population is P � 0 � 1235 	 0 � 00032 � 385 � 93 million. Now, to estimate
the actual population in 2050, we have to evaluate the constant in the general solution

(6.50) P � t � � 0 � 1235K
0 � 00032K � e � 0 � 1235t �

At t � 0, P � 281 � 4: this gives K � 8400. Then, the population in 2050 is

(6.51) P � 5 � � 0 � 1235 � 8400 �
0 � 00032 � 8400 ��� e � 0 � 1235 � 5 � � 321 � 45

million; a much more realistic estimate than the 521.8 million estimate of example 6.2.

�
6.3. General Exponentials and Logarithms

We can raise any positive number a to any power p: since a � elna

� ap � � elna � p � ep � lna � . This obser-
vation allows us to introduce the general exponential and logarithmic functions.

Definition 6.3 For a any positive number, we define the exponential function with base a by

(6.52) ax � e � lna � x
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and the logarithmic function with base a as its inverse function:

(6.53) y � loga x if and only if x � ay �

To find a formula for loga, we note that if if x � ay, then x � e � lna � y, so � lna � y � lnx. Replacing y by
loga x, we have

(6.54) loga x � lnx
lna

�

From the chain rule, we obtain these formula for the derivatives and integrals of these new functions:

Proposition 6.11

(6.55)
d
dx

ax � � lna � ax

�
d
dx

loga x � 1
� lna � x �

(6.56)
�

axdx � ax

lna
�

This notation allows us to replace the rate of decay of a radioactive element by its half life. For
suppose that a certain element has a rate of decay r, and a half-life T . Then 1 	 2 � e � rT , so that r � ln2 	 T .
Now, if an amount A of the element decays for t years, then the amount remaining is

(6.57) A � t � � Ae � rt � Ae � ln2 � t � T � � A � 2 � t � T � �

Example 6.16 Suppose that the half-life of a certain element is 40 years. How much will remain of a 1
kg sample after 200 years? After 50 years?

In 200 years the sample will have halved 5 times, so what will remain is 1 	 25 of a kilogram, or 31.25
g. After 50 years, we have A � t � � 1000 � 2 � 50 � 40 � � 435 grams.

�
6.4. First Order Linear Differential Equations

Definition 6.4 A first order linear differential equation is one of the type

(6.58)
dy
dx

� P � x � y � Q � x � �

It is said to be homogeneous if the function Q � x � is 0.

The equation is said to be first order since it involves only the first derivative, and linear since the
equation expresses the first derivative of the unknown function y as a linear function of y.

If P and Q are constant functions we can easily solve the differential equation by separation of
variables.
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Example 6.17 To solve, say

(6.59)
dy
dx

� 2y � 3

we rewrite the equation in the form � 2y � 3 � � 1dy � dx. These differentials integrate to the relation

(6.60)
1
2

ln � 2y � 3 � � x � C or � 2y � 3 � Kex �

Squaring both sides and solving for y, we get the general solution

(6.61) y � Ke2x � 3
2

�

For example, to find the solution with initial value y � 0 � � 5, we first solve for K:

(6.62) 5 � Ke2 � 0 � � 3
2 �

so K � 7, and the particular solution is y � � 7e2x � 3 � 	 2.

The acute reader will object that the integral of � 2y � 3 � � 1dy is � 1 	 2 � ln �
2y � 3

�
, and if we follow

through with this, this seems to lead to the alternative solution

(6.63) y � 3 � Ke2x

2
�

However, this is the same as 6.61, just with a different choice for the constant K. If we use 6.63 with the
same initial conditions y � 0 � � 5, we find this K ��� 7, giving the same final answer. For this reason it is
often the case that the absolute value is ignored.

The homogeneous equation is separable:

Example 6.18 Solve y � � 2xy � 0 � y � 2 � � 1.
We separate the variables: y � 1dy � 2xdx and integrate:

(6.64) lny � x2 � C �

Substituting the initial condition allows us to solve for C : ln1 � 4 � C, so C � � 4. Thus the particular
solution is given by

(6.65) lny � x2 � 4

which exponentiates to

(6.66) y � ex2 � 4 �

The general equation y � � P � x � y � Q � x � is solved by first solving the corresponding homogeneous
equation y � � P � x � y � 0, getting

(6.67) y � Ke ��� Pdx �



�
6.4 First Order Linear Differential Equations 101

If we now replace the unknown constant K by an unknown function u, and substitute this into the original
equation, we end up with this differential equation for u:

(6.68)
du
dx

e ��� Pdx � Q � x �

which is another separable equation, so is solved by integration. The terms involving an undifferentiated
u disappear precisely because e ��� Pdx solves the homogeneous equation. For this reason e ��� Pdx is called
an integrating factor. This method is called that of variation of parameters; the idea being to first find the
general solution of an easier equation, and then trying that in the original equation, but with the constant
replaced by a new unknown function. This method is extremely productive in solving very general types
of differential equations.

Example 6.19 Solve y � � 2xy � x � y � 0 � � 2 �
First solve the homogeneous equation y � � xy � 0, leading to

(6.69) y � Kex2 �
Now substitute y � uex2

into the original equation to obtain

(6.70) u � ex2 � x or u � � xe � x2 �
This integrates to

(6.71) u � � 1
2

e � x2 � C �
so that our general solution is y � uex2

with this u:

(6.72) y � � � 1
2

e � x2 � C � ex2 � � 1
2
� Cex2 �

Putting in the initial conditions, we get

(6.73) 2 ��� 1
2
� C

so that C � 5 	 2. Thus the solution is

(6.74) y � � 1 � 5ex2

2
�

Example 6.20 Find the general solution to xy � � y � x2.
We first must put this in the form 6.58:

(6.75)
dy
dx

� y
x
� x �

The solution to the homogeneous equation is y � Kx. So, we try y � ux, and obtain the equation

(6.76) u � x � x �
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which has the general solution u � x � C. Thus the general solution to the original problem is

(6.77) y � ux � � x � C � x � x2 � Cx �

Remember the steps to solve the equation y � � P � x � y � Q � x � :
1. Solve the homogeneous equation y � � P � x � y � 0, obtaining y � e ��� Pdx.
2. Try the solution y � ue ��� Pdx, leading to the equation for u : u � e ��� Pdx � Q � x � , or

u � � Q � x � e � Pdx.
3. Solve for u, and put that solution in the equation y � ue ��� Pdx. If an initial value is

specified, now solve for the unknown constant.

A useful fact to know about linear first order equations is that if we know one particular solution,
then we only have to solve the homogeneous equation to find all solutions.

Proposition 6.12 Suppose that yp is a solution of the differential equation y � � Py � Q. Then every
solution is of the form

(6.78) y � yp � Ke ��� Pdx ;

that is, every solution is of the form yp � yh, where yh is a solution of the homogeneous equation.

For suppose that y is any solution of the equation: y � � Py � Q. Then � y � yp � � � P � y � yp � �
� y � � Py � � � y �p � Pyp � � Q � Q � 0, so solves the homogeneous equation.

Example 6.21 Find the solution of the equation y � � 2y � 5 such that y � 0 � � 1.
Now the constant function yp � 5 	 2 solves the equation, since y �p � 0. The general solution of

the homogeneous equation is y � Ke2x, so our solution is of the form y � � 5 	 2 � � Ke2x. Substituting
y � 1 � x � 0, we find 1 � 5 	 2 � K, so K � � 3 	 2, and the particular solution we want is

(6.79) y � 1
2
� 5 � 3e2x � �

Example 6.22 A body falling due to gravity through a fluid is subjected to a resistance of the fluid
proportional to its velocity. (Here we are assuming that the density of the body is much higher than the
density of the fluid, and that its shape is not relevant). Let x � t � represent the distance fallen at time t and
v � t � the velocity. The hypothesis leads to the equation

(6.80)
dv
dt

��� kv � g

for some constant k (g is the acceleration of gravity), called the coefficient of resistance of the fluid.
Notice that the constant v � g 	 k is a solution of the equation. This is called the “free fall velocity”;
any falling body will accelerate until it reaches this maximum velocity. By proposition D.2, the general
solution is

(6.81) v � t � � g
k
� Ke � kt

�
for some constant k.
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Example 6.23 Suppose a heavy spherical object is throuwn from anairplane at 10000 meters, and that
the coefficient of resistance of air is k � 0 � 05. Find the velocity as a function of time. What is the free
fallvelocity? Approximately how long does it take to reach the ground?

Here g � 9 � 8, so the free fall velocity is vp � 9 � 8 	 � � 05 � � 196 meters/sec. The general solution to
the problem is

(6.82) v � t � � 196 � Ke � � � 02 � t �
At t � 0, v � 0, so 0 � 196 � K, and our solution is

(6.83) v � t � � 196 � 1 � e � � � 02 � t � �
To answer the last question, we have to find distance fallen as a function of time, by integrating the
above:

(6.84) x � t � � 196 � t � 50e � � � 02 � t ��� C �
At t � 0, x � 0; this gives C ��� 196 � 50 � , and the solution for our particular object:

(6.85) x � t � � 196 � t � 50 � e � � � 02 � t � 1 � � �
Now we want to solve for t when x � 10 � 000. For large t, theexponential term is negligible, so T , the
time to reach ground, is approximately given by the solution of

(6.86) 10 � 000 � 196 � T � 50 �
or T � 101 seconds.

�
6.5. Inverse Functions

The functions ex and lnx are inverses to each other in the sense that the two statements

(6.87) y � ex x � lny

are equivalent. In general, two functions f � g are said to be inverse to each other when the statements

(6.88) y � f � x � x � g � y �
are equivalent for x in the domain of f , and y in the domain of g. Often we write g � f � 1 and f � g � 1

to express this relation. Another way of giving this criterion is

(6.89) f � g � x � � � x g � f � x � � � x �
We have to be careful, in discussing inverses, to clearly indicate the domain and range. For example,
x2 and � x appear to be inverses since ��� x � 2 � x. But � x2 is not necessarily x, for x might have been
negative: � � � 5 � 2 � 5. This is clarified by restricting the domains of both functions to the positive
numbers, and by adopting the convention that � x always means the positive square root. That is, we
specify the domain and range of � x; having done so, it is the inverse to x2: the statements

(6.90) y � x2 x � � y
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Figure 6.5

PSfrag replacements

� 2 � 1 � 5 � 1 � 0 � 5 0 0 � 5 1 1 � 5 2

� 1 � 5
� 1

� 0 � 5
0

0 � 5
1

1 � 5

1
0 5

0
0 5

1
0

0 5
1

1 5
2

2 5
3

3 5

Figure 6.6

PSfrag replacements

2
1 5

1
0 5

0
0 5

1
1 5

2
1 5

1
0 5

0
0 5

1
1 5

� 1 � 0 � 5 0 0 � 5 1
0

0 � 5
1

1 � 5
2

2 � 5
3

3 � 5

are equivalent for the domains x
�

0 � y
�

0.
Now, we want to define inverses to the trigonometric functions. Consider first the sine function.

Since it is periodic, the equation siny � x has many solutions for x between � 1 and 1. But, if we insist
that y be between � π 	 2 and π 	 2, there is only one solution. So, to pick a definite inverse for the sine
function, we specify that its domain is the interval

� � 1 � 1 � , and its range (set of values) is
� � π 	 2 � π 	 2 � .

Then, with this specification, it is true that the equation siny � x has one and only one solution. That
solution we call the inverse sine function, denoted arcsinx. To repeat: arcsinx, for x between � 1 and 1
is the angle between � π 	 2 and π 	 2 whose sine is x. See figure 6.5 for a graph of y � arcsinx. Since
cos � � x � � cos � x � , it is not possible to define an inverse if we take the domain of cos to be any interval
about 0. However, we note that since the cosine function is strictly decreasing between 0 and π , we can
define an inverse on the interval

� � 1 � 1 � taking values between 0 and π : this is the inverse cosine, denoted
arccosx. (See figure 6.6 for the graph). Finally, to define an inverse to the tangent function, we note that
it is strictly increasing on the interval � π 	 2 � π 	 2 � and takes every value between � ∞ and ∞. Thus we
can define the inverse function for all real numbers, taking values in � π 	 2 � π 	 2 � . (See figure 6.7 for the
graph of y � arctanx).

Figure 6.7: y � arctanx
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Definition 6.5
a) y � arcsinx is defined by the condition x � siny on the interval

� � 1 � 1 � , taking values in
� � π 	 2 � π 	 2 � .
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b) y � arccosx is defined by the condition x � cosy on the interval
� � 1 � 1 � , taking values in

�
0 � π � .

c) y � arctanx is defined by the condition x � tany on the interval � � ∞ � ∞ � , taking values in � � π 	 2 � π 	 2 � .

Proposition 6.13 On their domains of definition, we have these formulae:

(6.91)
d
dx

arcsinx � 1
� 1 � x2

�
1

� 1 � x2
dx � arcsinx � C

(6.92)
d
dx

arccosx � � 1
� 1 � x2

�
1

� 1 � x2
dx ��� arccosx � C

(6.93)
d
dx

arctanx � 1
� 1 � x2 �

�
1

� 1 � x2 � dx � arctanx � C

To verify these differentiation formulae, we implicitly differentiate the defining equation, and then
use the appropriate trigonometric identity. For example, from x � siny, we get dx � cosydy. But, from
the Pythagorean theorem cosy � � 1 � � siny � 2 � � 1 � x2. Thus dx � � 1 � x2dy, which is the same as
a). We derive b) in the same way. Finally, from x � tany, we get dx � � secy � 2dy, and c) follows from
the identity � secy � 2 � 1 � � tany � 2.

Note that, for any acute angle α , its complementary angle is π 	 2 � α , thus sinα � cos � π 	 2 � α � .
Thus arcsinx � π 	 2 � arccosx, explaining the coincidence in formulae a) and b).

Example 6.24 Integrate sec2 	 � tan2 � 1 � .
Make the substitution u � tanx � du � sec2 xdx. Then

(6.94)
�

sec2

tan2 � 1
dx �

�
du

u2 � 1
� arctanu � C � arctan � tanx ��� C � x � C

which, of course could have been more easily derived using the trigonometric identity sec2 x � 1 � tan2 x.

These ideas can be applied in general to relate the derivatives of functions inverse to each other.

(6.95) y � f � x � if and only if x � g � y � �

Proposition 6.14 Suppose that f and g are inverse to each other in their respective domains. Suppose
that y � g � x � . Then g � � x � � 1 	 f � � y � .
To see this, differentiate the relations x � f � y � � y � g � x � implicitly with respect to x:

(6.96) 1 � f � � y � dy
dx �

dy
dx

� g � � x � �
so

(6.97) g � � x � � dy
dx

� 1
f � � y � �

Example 6.25 Suppose that g is the inverse to the function
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(6.98) f � x � � x2 � 3x � 5

for 0 � x � 3 	 2. Find g ��� 1 � .
The point here is that we don’t have to use the quadratic formula to answer this question. Let y �

g � x � . Since g is inverse to f , we have x � y2 � 3y � 5. First we find the value of y corresponding to
x � 1 : 1 � y2 � 3y � 5 has the solutions � 1 � 4. But since f is restricted to positive values, we must have
4 � g � 1 � . Now f � � y � � 2x � 3, so

(6.99) g � � 1 � � 1
f � � 4 � �

1
2 � 4 � � 3

� 1
5
�


