CHAPTER 10

Numerical Methods

§10.1. Taylor Approximation

Suppose that is a function defined in a neighborhood of a painand suppose thdthas derivatives of
all orders neac. In Chapter 9.5 we introduced the Taylor polynomials for

Definition 10.1 The Taylor polynomial of degree n of f, centered at c is

(10.1) (T £)(x) = i f(kli'(c) (X 0.
k=0 '

We discovered these polynomials by looking for the bestpatlyial approximation td.

Proposition 10.1 The Taylor ponnomiaIg]”) f is the polynomial of degree n or less which approximates
f near c to nth order.

In this section, we shall show how the Taylor polynomial&efively approximate the functiof
Thus we need information on the error incurred by these aqupiations. This also was given in the
previous section:

Proposition 10.2 Suppose that f is differentiable to ordes+1 in the interval[c — a,c + @] centered at
the point c. Then the error in approximating f in this interaa its Taylor polynomial of degree ne("'l’f
is bounded by

M
10.2 n+1 - n+1-
(10.2) e

where M, is a bound of the values of 1) over the intervalc — a,c+ a]. To be precise, we have the
inequality

M
(10.3) [ f(x) =T ()| < (nfll)'\x—c\”*l for all x betweerc—aandc+a.
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Before using this estimate, let us see how it comes aboutinT@ify the notation, we shall taketo
be the origin.

First, a preliminary step:
Lemma. Suppose that(0) =0, f'(0) =0,..., f(W(0) = 0. Then

Mn+1 ‘X‘m—l )

(10.4) 1100] < o

Let's show the case = 1. We havgf”(s)| <M, forall s, 0 <s<x. So, foranyt, 0 <t < x, we have

t t t
(10.5) \f’(t)|:|/ f”(s)dqg/ I£7(s)|ds< MZ/ ds< Myt .
0 0 0
But now,
X X X X2
(10.6) 1£(%)] :\/ £'(t)dt] g/ \f’(t)\dtg/ Matdt < M, %
0 0 0

Of course, the same argument worksXaregative, we just have to be careful with the signs.

The argument for any just bootstraps from this, proceeding from the estimatenferl to the
estimate fom (this is called goroof by inductio). Suppose we have gotten to the(1)th case. Then
the lemma applies (at— 1) to the derivativel’; so we know that

M
(10.7) ()] < ;—fl\t\” for all tin the intervall—a, 4] .

(We haveM,,_ , because thath derivative off’ is the(n+ 1)th derivative off). Now we argue indepen-
dently on each side of 0: for> 0:

X X XM
(10.8) |f(x)\:\'/o f’(t)dt\g/o |f’(t)\dt§/ Ly

Jo
Mn+l tn+1 — Mn+l |X|n+1
n n+l (n+1)! '

The argument fox < 0 is the same; just be careful with signs. Now that the lemmrarigied, we go
to the proposition itself. Lej = f — Tc(”)f Theng satisfies the hypotheses of the lemma. Furthermore,
sinceT "V f is a polynomial of degres, its (n-+ 1)th derivative is identically zero. Thug™) has the
same bounady, , ;. Applying the lemma t@, we have the desired result:

M
10. f(x) T < Lyl
(10.9) (X)) —Te \,(nﬂ)!\X\

If this error estimate converges to Oras»> o, then we saw that is be represented by iT&ylor series

(10.10) f(x) = (x—c)"

in the intervalc—a,c+a).
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Before doing some examples, let's review what has to be dimese the Taylor polynomials to find
approximate values to a function, we first have to find bouvigl$or the successive derivatives of the
function. Then we have to calculate the values of

M
(10.11) n—|n|x—c|“

for successive values ofuntil we have found one which is within the desired error. The calculate
using the Taylor polynomial of degree- 1.

Example 10.1 Find /e to within an error of 10%. This ise'/2, so we look at the functiofi(x) = €.
Sincef((x) = e for all n, and the value = 1/2 is within 1 of 0, we can use the Maclaurin series for
e and the bounddl, = el. Since 3 is more manageable thgwe takeM,, = 3. Now we estimate the
error at staga which we’ll call E(n). We have, in this example

31
10.12 E(n)=—(2)".
(10.12) () =-(3)
3
(10.13) n=1: E(1)=3
31
10.14 =2 E(2)=ZZ=
31 3
(10.15) n=3: E@)=;z=725
_ 31 3
(10.16) n=4: E(4)=_;ic=32,
(10.17) n=>5: E(5)—ii—78><10*4
' o T 12032
. 31 .
(10.18) n=6: E(6) =552, <10

Thus, we have our estimate to within 10by taking the fifth Taylor polynomial:

111 11 11 11
5 — _ - - _ _ =
(10.19) T5(€9(1/2) =1+ >t521681 2216 T 12032 1.6487

Example 10.2 Find sinrr/8 to within an error of 103,
Here we start with the Maclaurin series for sin
N

(10.20) sm(:x_g_}_l_zo_}_...
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Since the derivatives of sialternate betweett sinx and +cosx, we may takeM, = 1 for all n. We
need to choose large enough that the Taylor error estimgt@) satisfies

1l m, 1 4
(10.21) E(n) = (8) <310°.
T
(10.22) n=1: E(1)= g = 3927
1m,
(10.23) n=2: E(2= Q(g) =.077
1 m,
(10.24) n=3: E3) = 6(5) =.010
(10.25) n=4: E(4) = i(—)4 =.0009
' o 248"
so we need only go to = 3. The estimate is
(10.26) T3(sinx) (11/8) = g— %(7—;)2 — 3826

or sin(71/8) = .383, correct to three decimal places.

Some Taylor series converge too slowly to get a reasonalpigimation by just a few terms of
the series. As a rule, if the series has a factorial in the ohémator, this technique will work efficiently,
otherwise, it will not.

Example 10.3 Use the Maclaurin series
o n
(10.27) M+ = (71)“+1XF
n=1

to estimate 11 + a) for a > 0 to within 4 decimal places.
First we calculate the successive derivative$ @ = In(1+ x) to obtain the boundsl,. We have

(10.28) fOx) = ()" n—1)12+x) "
so we can tak&l, = (n—1)!. Thus we need, fox = a:

(10.29) By = N=Dtan_ %n <1074,

If a=1/10, then the estimate occursrat 4, so the first three terms will do. Butd=1/2, we don't
get this inequality untih = 12, so we’ll need 11 terms of the series.
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Figure 10.1 Figure 10.2

§10.2. Newton’s method

Suppose that we want to estimate the solution of the equéfion= 0. If this is a linear equation, there
is no problem: we just look for the point at which the line @esthe-axis. Newton’s idea is that, since
the tangent line approximates the graph, why not take asstiraate the point at which the tangent line
crosses the-axis? Well, to make sense of this, let's start at some vajuand calculate/y = f(x).
If that is O, then we're through. If not, le¢ be the point at which the tangent line (a,y,) crosses
the x-axis. That is our first approximation. If it is not good enbugeplacex, with x;, and repeat the
process, over and over again, until the result is good enough

This process is illustrated in figure 10.1. However, it ddeshvays work so well, as figure 10.2
shows. The important point is to start with a decent guesxjoso that we start in a range of the
function where the concavity of the curve forces convergari¢these successive approximations.

Newton’s method thus, is a technique for replacing an appration by a better one. Suppose
we start with the functiory = f(x), and have found an approximation= a, with f(a) (relatively)
close to zero. The slope of the tangent linexat a is f'(a), and the equation of the tangent line is
y— f(a) = f’(a)(x— a). This intersects the-axis wherey = 0, so we have

f(a)

f'(a)

We now replace by this value, and repeat the process. This is callextarsiongiven by therecursion
formula (10.30). How do we know when we are within an ereoof the solution? If the process is
working, that is, if the successive approximations ardiggttloser and closer together, then we can stop
as soon as they are withaof each other. If we have started with an estimate which ifaooff, the
process won't work at all, and we’ll have to start with a beéstimate.

(10.30) —f(a) = f'(a)(x—a) which has the solutionx=a—

Example 10.4 Find+/8 correct to within 4 decimal places.
Here we want to find the root of the equatiftx) = x> —8 = 0. Let's start withx, = 3. Since
f'(x) = 2x, the next estimate is

32-8
(10.31) X, =3- 573

=2.8333

We now use this in the recursion, and continue until we retahilgy in the first 4 decimal places:

(2.8333%-8

228333  ~0284

(10.32) X, = 2.8333—
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(2.8284° -8
2.2.8284
which we conclude is the estimate accurate to 4 decimal place

(10.33) Xg = 2.8284~— = 2.8284,

Before going on to other examples, we summarize the progessolvef(x) = 0:
1. Calculatef’(x).
2. Calculate the recursion relation
X
f(x) -
3.. Select a first estimatg, so thatf (x,) is small andf’(x,) is large.

4. Findx, from x, by takingx = x,, X' = X, in the recursion relation.
5. Repeat step 4 until the successive estimates are nofffndheeach other than the desired estimate.

(10.34) X =X

Example 10.5 Find the solutions of (x) = x® — 12x+ 1 = 0 to three decimal places.

First we graph the function so as to make an intelligent fistiteate. We havé’(x) = 3x° — 12, so
the local maximum and minimum gf= f(x) are at (-2,17), (2, -15). &A= 0,y =1, and the graph is
as shown in figure 10.3. There are three solutions; one aio8eanother larger than 2, and a third less
than -2.

Figure 10.3: Graph of = x3 — 12x+ 1

[N,

First, find the solution near zero. We see from the graph tleterivative is well away from zero in a
range including = 0 and the solution, so we can take our first estimate te,be0. Now we calculate
successive estimates:

1 1
(10.35) X =0-— =5 =.08333
(.083333-12(.08333 + 1
10.36 —.08333- —.08338,
(10.36) % 3(.083332_ 12 '
(10.37) X = .08338

so this solution ix = .08338 up to four decimal places. Now, to find the solutiondarthan 2, it will
not do to takex, = 2, since the derivative is 0 there. But if we take= 3, we havef'(3) = 15, a nice
large number, so the recursion should work. We find

¥-123)+1 _ -8

3 - — =3.5333,

(10.38) =3 Tgm =3 g
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(353333 -12(35333 + 1
3(3.53332 - 12

(10.39) X, = 3.5333— = 3.4267

(10.40) Xg = 3.4215, X, = 3.4215,

so this is the answer correct to four decimal places. In theesaay, starting ax, = —3, we find the
third solution.

Example 10.6 Solvee* = x+ 2 correct to three decimal places.

Heref(x) = e*—x—2, f'(x) = €*— 1. Since the derivative is increasing, and greater thanZ=t,
andf(1) <0, while f(2) > 0, a good first estimate will be any number between 1 and 2.a8ex} = 1.
The recursion is

& x-2_ ex-1)+2
-1 e—1 '

(10.41) ¥ =x

We now calculate the successive estimates:
(10.42) X; =1.16395, x,=11464, x;=11462, x,=11462,

so this is the desired estimate. Notice that in this range dérivative is not very large, so that the
convergence is slower than in the preceding examples.

§10.3. Numerical Integration

We have learned techniques for calculating definite integvhich are based on finding antiderivatives of
the function to be integrated. However, in many cases weatdimal an expression for the antiderivative,
and these techniques will not lead to an answer. For exarfple= v1+x3. No formula for the
integral exists in any integral tables. In such a case, we kaveturn to the definition of the integral,
and approximate the definite integral by the approximatimgs To explain this, we first review the
definition of the definite integral.

Definition 10.2 Lety= f(x) be a function defined on the intenjal b]. The definite integral is defined
as follows. A partition of the interval is any increasing geqce

(10.43) {a=%xy<x <~ <X, <X =b}

of points in the interval. The corresponding approximatsugn is
n
(10.44) Z f(x)Ax

whereAx; is the length x—x,_; of the ith interval, kis any point on that interval, an§ indicates that
we add all these products together (see Figure 10.4).
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Figure 10.4: Approximation to the area under a curve.

y="F100 17

If these approximating sums approach a limit as the pamttiecomes increasingly fine (the lengths
of the subdivisions go to zero), this limit is tdefinite integrabf f over the intervala, b], denoted

(10.45) / " fx)dx.

Thus, we can approximate a definite integral by the sums 4)0Gne way to accomplish this is the
following. Pick an integeN, and divide the intervdh, b] into N subintervals, all of sizéb—a)/N. For
each subinterval, evaluate the function at the right engpxpiand form the sum

(10.46) % fx)ax — 8 N 3

N
Z f(x) (Approximating Rectanglgs

1

Example 10.7 Let's find an approximate value fo/ v/ 1+ x3dx this way. Let's divide the interval
Jo

into 10 subintervals. Then the sum (10.46) is

(10.47) 1—10(\/1+ (1/10)34+ /14 (2/10)3+ /1 + (3/10)3+--- /1 + (10/10)3)

1
= E(l.OOOS—i— 1.0040+ 1.0134+1.0315+1.0607+4 1.1027+ 1.1589
+1.2296+ 1.3149+ 1.4142 = 1.1330

Of course these calculations are tedious if done by handpgutomputer - completely trivial. It is
a good idea to try these using a spreadsheet, because thegetto follow the computation. If we take
more subdivisions, we get a better approximation. For exenfpve takeN = 100 we get

%00(\/1—}—(1/100)3+ V1+(2/1003+ \/1+ (3/1003+

--+\/1+ (100/100)3) = 1.113528,

an apparently better approximation.

(10.48)

2

Example 10.8 Just to see how well this method is working, let us use it torcm'mate/ xt4dx,
J1

which we know to bg2?4 —1)/(2.4) = .1.782513... Let's first takeN = 10. The approximating sum

is

(10.49) %((1.1)1-4 +(1L2)M 4 (13 4+ (1)
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1
(10.50) 1—0(1.1427+ 1.2908+ 1.4438+ 1.6017+ 1.7641+ 1.9309+ 2.1020+

2.2771+ 2.4562+2.6390 = 1.8648

ForN = 100 we obtain the estimate 1.790712, which is better, bugjrezt.

We can improve this method by improving the estimate in eatinserval. First, note that we have
estimated the integral in each subinterval by the area ofgtimngle of height at the right endpoint. If
instead we estimate this area using the trapezoid whose sjgeis the line segment joining the two
endpoints (see figure 10.5), it makes sense that this is erlestimate.

Figure 10.5

y=f(x

I
o

This comes down to

(b—2a)
2N

(10.51) (f(a) + ZNZlf(xi) +f(b)) (Trapezoid Rul

Going one step further, we might replace the upper curve byo#st parabolic approximation. Rsr
even, this leads to the rule

(b—a)
3N
Let us now do the above examples using these two rules:

(10.52)

(f(a) +4f (X)) + 2 (%)) + 4 (Xg) + -+ 4f (xy_;) + f(b)) (Simpsors Rulg

1
Example 10.9 The calculation of/ v/ 1+ x3dxusing the Trapezoidal rule amti= 10 gives us
JO

1
(10.53) 251+ 2(V1+ (/102 +v/1+(2/10° + 1+ (3/107+ -
+v/1+(9/10)%) +v2)
- %) (1+2(1.0005+ 1.0040+ 1.0134+ - -+ 1.2296+ 1.3149)

+1.4142 =1.0123

1
Example 10.10 Let's compare the estimates ﬁ x4dx with these two new methods. First, with
0

N = 10, and the trapezoid rule:

(10.54) 2—10(1+ 2((1)Y+ (1.2)M 4+ (1.3) M4+ (L9 + 21 =



