
CHAPTER 10

Numerical Methods

x10.1. Taylor Approximation

Suppose thatf is a function defined in a neighborhood of a pointc, and suppose thatf has derivatives of
all orders nearc. In Chapter 9.5 we introduced the Taylor polynomials forf :

Definition 10.1 The Taylor polynomial of degree n of f , centered at c is

(10.1) (T(n)
c f )(x) = n

∑
k=0

f (k)(c)
k!

(x�c)k :
We discovered these polynomials by looking for the best polynomial approximation tof .

Proposition 10.1 The Taylor polynomial T(n)c f is the polynomial of degree n or less which approximates
f near c to nth order.

In this section, we shall show how the Taylor polynomials effectively approximate the functionf .
Thus we need information on the error incurred by these approximations. This also was given in the
previous section:

Proposition 10.2 Suppose that f is differentiable to order n+1 in the interval[c�a;c+a] centered at
the point c. Then the error in approximating f in this interval by its Taylor polynomial of degree n, T(n)c f
is bounded by

(10.2)
Mn+1(n+1)! jx�cjn+1 ;

where Mn+1 is a bound of the values of f(n+1) over the interval[c�a;c+a]. To be precise, we have the
inequality

(10.3) jj f (x)�Tn
c f (x)j � Mn+1(n+1)! jx�cjn+1 for all x betweenc�a andc+a :
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Before using this estimate, let us see how it comes about. To simplify the notation, we shall takec to
be the origin.

First, a preliminary step:
Lemma. Suppose thatf (0) = 0; f 0(0) = 0; : : : ; f (n)(0) = 0. Then

(10.4) j f (x)j � Mn+1(n+1)! jxjn+1 :
Let’s show the casen= 1. We havej f 00(s)j �M2 for all s; 0� s� x. So, for anyt; 0� t � x, we have

(10.5) j f 0(t)j= jZ t

0
f 00(s)dsj � Z t

0
j f 00(s)jds�M2

Z t

0
ds�M2t :

But now,

(10.6) j f (x)j = jZ x

0
f 0(t)dtj � Z x

0
j f 0(t)jdt � Z x

0
M2tdt�M2

x2

2
:

Of course, the same argument works forx negative, we just have to be careful with the signs.
The argument for anyn just bootstraps from this, proceeding from the estimate forn� 1 to the

estimate forn (this is called aproof by induction). Suppose we have gotten to the (n�1)th case. Then
the lemma applies (atn�1) to the derivativef 0; so we know that

(10.7) j f 0(t)j � Mn+1

n!
jtjn for all t in the interval[�a;a] :

(We haveMn+1 because thenth derivative off 0 is the(n+1)th derivative off ). Now we argue indepen-
dently on each side of 0: forx> 0:j f (x)j = jZ x

0
f 0(t)dtj � Z x

0
j f 0(t)jdt � Z x

0

Mn+1

n!
tndt(10.8) � Mn+1

n!
tn+1

n+1
= Mn+1(n+1)! jxjn+1:

The argument forx< 0 is the same; just be careful with signs. Now that the lemma isverified, we go
to the proposition itself. Letg= f �T(n)

c f Theng satisfies the hypotheses of the lemma. Furthermore,
sinceT(n)

c f is a polynomial of degreen, its (n+1)th derivative is identically zero. Thusg(n+1) has the
same bound,Mn+1. Applying the lemma tog, we have the desired result:

(10.9) j f (x)�T(n)
c f j � Mn+1(n+1)! jxjn+1 :

If this error estimate converges to 0 asn! ∞, then we saw thatf is be represented by itsTaylor series:

(10.10) f (x) = ∞

∑
n=0

f (n)(c)
n!

(x�c)n

in the interval[c�a;c+a].
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Before doing some examples, let’s review what has to be done.To use the Taylor polynomials to find
approximate values to a function, we first have to find boundsMn for the successive derivatives of the
function. Then we have to calculate the values of

(10.11)
Mn

n!
jx�cjn

for successive values ofn until we have found one which is within the desired error. Then we calculate
using the Taylor polynomial of degreen�1.

Example 10.1 Find
p

e to within an error of 10�4. This ise1=2, so we look at the functionf (x) = ex.
Since f (n)(x) = ex for all n, and the valuex= 1=2 is within 1 of 0, we can use the Maclaurin series for
ex and the boundsMn = e1. Since 3 is more manageable thane, we takeMn = 3. Now we estimate the
error at stagen which we’ll call E(n). We have, in this example

(10.12) E(n) = 3
n!
(1
2
)n :

(10.13) n= 1 : E(1) = 3
2

(10.14) n= 2 : E(2) = 3
2

1
4

(10.15) n= 3 : E(3) = 3
6

1
8
= 3

48

(10.16) n= 4 : E(4) = 3
24

1
16

= 3
384

(10.17) n= 5 : E(5) = 3
120

1
32

= 7:8�10�4

(10.18) n= 6 : E(6) = 3
720

1
64

< 10�4

Thus, we have our estimate to within 10�4 by taking the fifth Taylor polynomial:

(10.19) T5
0 (ex)(1=2) = 1+ 1

2
+ 1

2
1
4
+ 1

6
1
8
+ 1

24
1
16

+ 1
120

1
32

= 1:6487

Example 10.2 Find sinπ=8 to within an error of 10�3.
Here we start with the Maclaurin series for sinx:

(10.20) sinx= x� x3

6
+ x5

120
+ � � �
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Since the derivatives of sinx alternate between�sinx and�cosx, we may takeMn = 1 for all n. We
need to choosen large enough that the Taylor error estimateE(n) satisfies

(10.21) E(n) = 1
n!
(π

8
)n < 1

2
10�3 :

(10.22) n= 1 : E(1) = π
8
= :3927

(10.23) n= 2 : E(2) = 1
2
(π

8
)2 = :077

(10.24) n= 3 : E(3) = 1
6
(π

8
)3 = :010

(10.25) n= 4 : E(4) = 1
24

(π
8
)4 = :0009

so we need only go ton= 3. The estimate is

(10.26) T3
0 (sinx)(π=8) = π

8
� 1

6
(π

8
)2 = :3826

or sin(π=8) = :383, correct to three decimal places.

Some Taylor series converge too slowly to get a reasonable approximation by just a few terms of
the series. As a rule, if the series has a factorial in the denominator, this technique will work efficiently,
otherwise, it will not.

Example 10.3 Use the Maclaurin series

(10.27) ln(1+x) = ∞

∑
n=1

(�1)n+1xn

n

to estimate ln(1+a) for a> 0 to within 4 decimal places.
First we calculate the successive derivatives off (x) = ln(1+x) to obtain the boundsMn. We have

(10.28) f (n)(x) = (�1)n�1(n�1)!(1+x)�n

so we can takeMn = (n�1)!. Thus we need, forx= a:

(10.29) E(n) = (n�1)!
n!

an = an

n
< 10�4 :

If a= 1=10, then the estimate occurs atn= 4, so the first three terms will do. But ifa= 1=2, we don’t
get this inequality untiln= 12, so we’ll need 11 terms of the series.
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Figure 10.1

x0 x1 x2

Figure 10.2

x0x0 x1x1 x2x10.2. Newton’s method

Suppose that we want to estimate the solution of the equationf (x) = 0. If this is a linear equation, there
is no problem: we just look for the point at which the line crosses thex-axis. Newton’s idea is that, since
the tangent line approximates the graph, why not take as the estimate the point at which the tangent line
crosses thex-axis? Well, to make sense of this, let’s start at some valuex0 and calculatey0 = f (x0).
If that is 0, then we’re through. If not, letx1 be the point at which the tangent line at(x0;y0) crosses
thex-axis. That is our first approximation. If it is not good enough, replacex0 with x1, and repeat the
process, over and over again, until the result is good enough.

This process is illustrated in figure 10.1. However, it doesn’t always work so well, as figure 10.2
shows. The important point is to start with a decent guess forx0, so that we start in a range of the
function where the concavity of the curve forces convergence of these successive approximations.

Newton’s method thus, is a technique for replacing an approximation by a better one. Suppose
we start with the functiony = f (x), and have found an approximationx = a, with f (a) (relatively)
close to zero. The slope of the tangent line atx = a is f 0(a), and the equation of the tangent line is
y� f (a) = f 0(a)(x�a). This intersects thex-axis wherey= 0, so we have

(10.30) � f (a) = f 0(a)(x�a) which has the solution x= a� f (a)
f 0(a)

We now replacea by this value, and repeat the process. This is called arecursiongiven by therecursion
formula (10.30). How do we know when we are within an errore of the solution? If the process is
working, that is, if the successive approximations are getting closer and closer together, then we can stop
as soon as they are withine of each other. If we have started with an estimate which is toofar off, the
process won’t work at all, and we’ll have to start with a better estimate.

Example 10.4 Find
p

8 correct to within 4 decimal places.
Here we want to find the root of the equationf (x) = x2� 8 = 0. Let’s start withx0 = 3. Since

f 0(x) = 2x, the next estimate is

(10.31) x1 = 3� 32�8
2�3

= 2:8333

We now use this in the recursion, and continue until we reach stability in the first 4 decimal places:

(10.32) x2 = 2:8333� (2:8333)2�8
2 �2:8333

= 2:8284
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(10.33) x3 = 2:8284� (2:8284)2�8
2 �2:8284

= 2:8284;
which we conclude is the estimate accurate to 4 decimal places.

Before going on to other examples, we summarize the process:To solve f (x) = 0:
1. Calculatef 0(x).
2. Calculate the recursion relation

(10.34) x0 = x� f (x)
f 0(x) :

3.. Select a first estimatex0, so thatf (x0) is small andf 0(x0) is large.
4. Findx1 from x0 by takingx= x0; x0 = x1 in the recursion relation.
5. Repeat step 4 until the successive estimates are no further from each other than the desired estimate.

Example 10.5 Find the solutions off (x) = x3�12x+1= 0 to three decimal places.
First we graph the function so as to make an intelligent first estimate. We havef 0(x) = 3x2�12, so

the local maximum and minimum ofy= f (x) are at (-2,17), (2, -15). Atx= 0, y= 1, and the graph is
as shown in figure 10.3. There are three solutions; one close to 0, another larger than 2, and a third less
than -2.

Figure 10.3: Graph ofy= x3�12x+1

x0

x1

x2

First, find the solution near zero. We see from the graph that the derivative is well away from zero in a
range includingx= 0 and the solution, so we can take our first estimate to bex0 = 0. Now we calculate
successive estimates:

(10.35) x1 = 0� 1�12
= 1

12
= :08333

(10.36) x2 = :08333� (:08333)3�12(:08333)+1
3(:08333)2�12

= :08338;
(10.37) x3 = :08338

so this solution isx = :08338 up to four decimal places. Now, to find the solution larger than 2, it will
not do to takex0 = 2, since the derivative is 0 there. But if we takex0 = 3, we havef 0(3) = 15, a nice
large number, so the recursion should work. We find

(10.38) x1 = 3� 33�12(3)+1
3(32)�12

= 3� �8
15

= 3:5333;
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(10.39) x2 = 3:5333� (3:5333)3�12(3:5333)+1
3(3:5333)2�12

= 3:4267

(10.40) x3 = 3:4215; x4 = 3:4215;
so this is the answer correct to four decimal places. In the same way, starting atx0 = �3, we find the
third solution.

Example 10.6 Solveex = x+2 correct to three decimal places.
Here f (x) = ex�x�2; f 0(x) = ex�1. Since the derivative is increasing, and greater than 1 atx= 1,

and f (1)< 0, while f (2)> 0, a good first estimate will be any number between 1 and 2. So, takex0 = 1.
The recursion is

(10.41) x0 = x� ex�x�2
ex�1

= ex(x�1)+2
ex�1

:
We now calculate the successive estimates:

(10.42) x1 = 1:16395; x2 = 1:1464; x3 = 1:1462; x4 = 1:1462;
so this is the desired estimate. Notice that in this range, the derivative is not very large, so that the
convergence is slower than in the preceding examples.x10.3. Numerical Integration

We have learned techniques for calculating definite integrals which are based on finding antiderivatives of
the function to be integrated. However, in many cases we cannot find an expression for the antiderivative,
and these techniques will not lead to an answer. For examplef (x) = p

1+x3. No formula for the
integral exists in any integral tables. In such a case, we have to return to the definition of the integral,
and approximate the definite integral by the approximating sums. To explain this, we first review the
definition of the definite integral.

Definition 10.2 Let y= f (x) be a function defined on the interval[a;b]. The definite integral is defined
as follows. A partition of the interval is any increasing sequence

(10.43) fa= x0 < x1 < � � �< xn�1 < xn = bg
of points in the interval. The corresponding approximatingsum is

(10.44)
n

∑
1

f (x0i)∆xi

where∆xi is the length xi �xi�1 of the ith interval, x0i is any point on that interval, and∑ indicates that
we add all these products together (see Figure 10.4).
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Figure 10.4: Approximation to the area under a curve.

a b

y= f (x)
If these approximating sums approach a limit as the partition becomes increasingly fine (the lengths

of the subdivisions go to zero), this limit is thedefinite integralof f over the interval[a;b], denoted

(10.45)
Z b

a
f (x)dx :

Thus, we can approximate a definite integral by the sums (10.44). One way to accomplish this is the
following. Pick an integerN, and divide the interval[a;b] into N subintervals, all of size(b�a)=N. For
each subinterval, evaluate the function at the right endpoint xi , and form the sum

(10.46)
N

∑
1

f (xi)∆xi = (b�a)
N

N

∑
1

f (xi) (Approximating Rectangles)
Example 10.7 Let’s find an approximate value for

Z 1

0

p
1+x3dx this way. Let’s divide the interval

into 10 subintervals. Then the sum (10.46) is

1
10

(p1+(1=10)3+p
1+(2=10)3+p

1+(3=10)3+ � � �p1+(10=10)3)(10.47) = 1
10

(1:0005+1:0040+1:0134+1:0315+1:0607+1:1027+1:1589+1:2296+1:3149+1:4142)= 1:1330:
Of course these calculations are tedious if done by hand, but, by computer - completely trivial. It is

a good idea to try these using a spreadsheet, because there you get to follow the computation. If we take
more subdivisions, we get a better approximation. For example, if we takeN = 100 we get

1
100

(p1+(1=100)3+p
1+(2=100)3+p

1+(3=100)3+(10.48) � � �p1+(100=100)3) = 1:113528;
an apparently better approximation.

Example 10.8 Just to see how well this method is working, let us use it to approximate
Z 2

1
x1:4dx,

which we know to be(22:4�1)=(2:4) = :1:782513: : :. Let’s first takeN = 10. The approximating sum
is

(10.49)
1
10

((1:1)1:4+(1:2)1:4+(1:3)1:4+ � � �(2)1:4)
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1
10

(1:1427+1:2908+1:4438+1:6017+1:7641+1:9309+2:1020+(10.50)

2:2771+2:4562+2:6390)= 1:8648:
ForN = 100 we obtain the estimate 1.790712, which is better, but notgreat.

We can improve this method by improving the estimate in each subinterval. First, note that we have
estimated the integral in each subinterval by the area of therectangle of height at the right endpoint. If
instead we estimate this area using the trapezoid whose upper side is the line segment joining the two
endpoints (see figure 10.5), it makes sense that this is a better estimate.

Figure 10.5

y= f (x)
a b

This comes down to

(10.51)
(b�a)

2N
( f (a)+2

N�1

∑
1

f (xi)+ f (b)) (Trapezoid Rule)
Going one step further, we might replace the upper curve by the best parabolic approximation. ForN
even, this leads to the rule

(10.52)
(b�a)

3N
( f (a)+4 f (x1)+2 f (x2)+4 f (x3)+ � � �+4 f (xN�1)+ f (b)) (Simpson0s Rule)

Let us now do the above examples using these two rules:

Example 10.9 The calculation of
Z 1

0

p
1+x3dxusing the Trapezoidal rule andN = 10 gives us

1
20

(1+2
�p

1+(1=10)3+p
1+(2=10)3+p

1+(3=10)3+ � � �(10.53) +p1+(9=10)3
�+p

2)= 1
20

(1+2
�
1:0005+1:0040+1:0134+ � � �+1:2296+1:3149

�+1:4142) = 1:0123:
Example 10.10 Let’s compare the estimates of

Z 1

0
x1:4dx with these two new methods. First, with

N = 10, and the trapezoid rule:

(10.54)
1
20

(1+2
�(1:1)1:4+(1:2)1:4+(1:3)1:4+ � � �(1:9)1:4�+21:4 =


