MATH 1220-90 Fall 2011 First Midterm Exam

INSTRUCTOR: H.-PING HUANG

LAST NAME			
FIRST NAME	Grader's	Copy	
ID NO			
11/11/0			···

INSTRUCTION: SHOW ALL OF YOUR WORK. MAKE SURE YOUR ANSWERS ARE CLEAR AND LEGIBLE. USE **SPECIFIED** METHOD TO SOLVE THE QUESTION. IT IS NOT NECESSARY TO SIMPLIFY YOUR FINAL ANSWERS.

TOTAL	100	
PROBLEM 5	20	····
PROBLEM 4	20	
PROBLEM 3	20	
PROBLEM 2	20	
PROBLEM 1	20	

(20 pt) Find
$$\int_1^8 \frac{\ln(3x)}{x} dx.$$

$$u = \ln(3x) \qquad du = \frac{1}{3x} 3 dx$$

$$(\ln(3x) = \ln 3) = \frac{1}{x} dx$$

$$+ \ln x$$

$$+lnx$$

$$\int \ln 24$$

$$\int u = \ln 3$$

$$= \frac{1}{2}u^2 \left| \frac{1}{\ln 3} \right|$$

$$(5pt)$$

(20 pt) A curve is given by the equation:

$$y^3 + 129 = (e^x + 1)^2.$$

Find the slope of the tangent line at the point (0, -5).

$$3y^{2} dy = 2(e^{x} + 1)e^{x} (10pt)$$

$$3 \cdot (-5)^{2} y' = 2(1+1) \cdot 1$$

$$y' = \frac{2 \cdot 2}{3 \cdot 25} (5pt)$$

$$[In Jact, it should be checked Sirst that $(-5)^{3} + 129 = (e^{0} + 1)^{2} = 7$$$

(20 pt) Find

01

(20 pt) x > 0, find $D_x y$ if

$$y = (6x)^{6x}.$$

(1)
$$\ln y = 6x \ln (6x)(\frac{3}{9}pt)$$
 $\frac{1}{y} \frac{dy}{dx} = 6 \ln (6x) + 6x \cdot \frac{1}{x}$
 $\frac{dy}{dx} = [6 \ln (6x) + 6](\frac{6x}{9}pt)$

(2) $y = e^{6x \ln (6x)} \frac{3}{9}pt$
 $e^{6x \ln (6x)} \frac{3}{9}pt$

(20 pt) An object is taken from an oven at 350°F and left to cool in a room at 70°F. If the temperature fell to 250°F in one hour, what would its temperature be three hours after it was removed from the over?

$$t = 7 - 70(5t)$$

$$\frac{dt}{dh} = kt$$

$$t = 5 \cdot 6$$

$$t = 6$$

$$k = 1 \cdot \frac{180}{280} (5pt)$$

$$t = 6 \cdot \frac{180}{280} (5pt)$$