Solutions for Introduction to Polynomial Calculus

Section 4 Problems - Antiderivatives of Polynomials

Bob Palais

Calling the function in each problem $f(x)$ and using the three antidifferentiation rules corresponding to the previous three differentiation rules:

The antiderivative of $f(x)=x^{n}$ is $\int f(x) d x=\frac{x^{n+1}}{n+1}+C$.
If $f(x)=u(x)+v(x)$ then $\int f(x) d x=\int u(x) d x+\int v(x) d x$.
If $f(x)=c(u(x))$ where c is a constant, then $\int f(x) d x=c \int u(x) d x$.
(1) $\int f(x) d x=x^{2}-3 x+C$. You should check this by taking its derivative!
(2) $\int f(x) d x=x^{3}-2 x^{2}+5 x+C$.
(3) $\int f(x) d x=\frac{x^{6}}{6}+\frac{x^{4}}{2}+x+C$.
(4) $\int f(x) d x=x^{10}-4 x^{2}+C$.

Find the general antiderivative then impose the condition to determine C :
(5) $F(x)=\int f(x) d x=\frac{x^{3}}{3}-5 x+C$ and $F(0)=2$ says $C=2$, so $F(x)=\frac{x^{3}}{3}-5 x+2$.
(6) $F(x)=\int f(x) d x=2 x^{4}-x^{2}+C$ and $F(1)=4$ says $2-1+C=4$, so $C=3$ and $F(x)=2 x^{4}-x^{2}+3$.
(7) $F(x)=\int f(x) d x=\frac{x^{4}}{2}+C$ and $F(1)=1$ says $\frac{1}{2}+C=1$, so $C=\frac{1}{2}$ and $F(x)=\frac{x^{4}}{2}+\frac{1}{2}$.
(8) $F(x)=\int f(x) d x=\frac{x^{4}}{4}-\frac{x^{2}}{2}+C$ and $F(2)=1$ says $4-2+C=1$, so $C=-1$ and $F(x)=\frac{x^{4}}{4}-\frac{x^{2}}{2}-1$.
(9) The derivative of velocity is acceleration, and the acceleration of any body near the earth's surface under only the force of gravity is -32 feet per second squared. Since the (vertical) velocity is then the antiderivative of the acceleration,

$$
v(t)=\int a(t) d t=\int-32 d t=-32 t+C
$$

feet per second. We are given that $v(0)=64$ feet per second, so $0+C=64$ and $v(t)=$ $-32 t+64$ feet per second is the velocity after t seconds. The ball will achieve its maximum height when its vertical velocity changes from positive to negative, i.e., when $v(t)=-32 t+$ $64=0$, so when $t=2$ seconds.
(10) The derivative of (vertical) displacement, or height, is velocity, and the velocity of the ball is $v(t)=-32 t+64$ from the previous problem. Since the (vertical) displacement is then the antiderivative of the velocity,

$$
s(t)=\int v(t) d t=\int-32 t+64 d t=-16 t^{2}+64 t+C
$$

feet. We are given that $s(0)=6$ feet, so $0+0+C=6$ and $s(t)=-16 t^{2}+64 t+6$ feet is the height of the ball after t seconds. Since the ball achieves its maximum height when $t=2$ seconds, the maximum height it achieves is $s(2)=70$ feet.

