Solutions for Introduction to Polynomial Calculus
 Section 3 Problems - The Derivative of a Polynomial
 Bob Palais

Calling the function in each problem $f(x)$ and using the three rules from the previous section:

The derivative of $f(x)=x^{n}$ is $f^{\prime}(x)=n x^{n-1}$.
If $f(x)=u(x)+v(x)$ then $f^{\prime}(x)=u^{\prime}(x)+v^{\prime}(x)$.
If $f(x)=c(u(x))$ where c is a constant, then $f^{\prime}(x)=c\left(u^{\prime}(x)\right)$.
(1) $f^{\prime}(x)=9 x^{8}$.
(2) $f^{\prime}(x)=100 x^{49}$.
(3) $f^{\prime}(x)=3$.
(4) $f^{\prime}(x)=3 x^{2}-2$.
(5) $f^{\prime}(x)=8 x^{3}+3 x^{2}-10 x+1$.
(6) $f^{\prime}(x)=11 x^{10}-18 x^{8}+15$.

Computing $f^{\prime}(x)$ and setting x equal to the x value at the given point on the graph:
(7) $f^{\prime}(x)=3 x^{2}$, and $f^{\prime}(1)=3$ gives the slope of the curve at $(1,1)$, as in problem (7) of the previous section. If you prefer when the function is given as $y=f(x)$ you may prefer to use $\frac{d y}{d x}$ (Leibniz notation) instead of $f^{\prime}(x)$ (Newton notation). Then instead of $f^{\prime}(1)$ we sometimes write $\left.\frac{d y}{d x}\right|_{x=1}$ or even $\frac{d y}{d x}(1)$.
(8) $f^{\prime}(x)=2 x$, and $f^{\prime}(0)=0$ gives the slope of the curve at $(0,0)$, as in problem (2) of the previous section.
(9) $f^{\prime}(x)=3 x^{2}-2 x$, and $f^{\prime}(1)=1$ gives the slope of the curve at $(1,0)$.
(10) $f^{\prime}(x)=4 x^{3}-6 x^{2}+5$, and $f^{\prime}(2)=13$ gives the slope of the curve at $(2,7)$. The y-value comes from evaluating $f(2)$. The equation for the tangent line is $y-7=13(x-2)$.
(11) $f^{\prime}(x)=10 x^{9}-5 x^{4}$, and $f^{\prime}(1)=5$ gives the slope of the curve at $(1,0)$. The y-value comes from evaluating $f(1)$. The equation for the tangent line is $y-0=5(x-1)$.
(12) $f^{\prime}(x)=2 x-2$, and $f^{\prime}(x)=0$ when $2 x-2=0$ or $x=1, f^{\prime}(x)>0$ when $2 x-2>0$ or $x>1$, and $f^{\prime}(x)<0$ when $2 x-2<0$ or $x<1$. In words, the curve has positive slope for $x>1$, negative slope for $x<1$ and zero slope for $x=1$.
(13) The (vertical) velocity of the ball t seconds after it is thrown is given by $\frac{d s}{d t}=$ $s^{\prime}(t)=-32 t+32$. The ball reaches its maximum height when its velocity changes from positive to negative, i.e., when $s^{\prime}(t)=-32 t+32=0$ or $t=1$. The height of the ball at $t=1$ is $s(1)=22$ feet.
(14) The (vertical) acceleration of the ball t seconds after it is thrown is given by $\frac{d^{2} s}{d t^{2}}=s^{\prime}(t)=-32$ feet per second per second or feet per second squared. The velocity loses a constant 32 feet per second upward every second.

