
Solutions for Introduction to Polynomial Calculus

Section 2 Problems - The Slope of a Curve

Bob Palais

(1)
f(1 + h) − f(1)

h
=

3(1 + h) + 2 − (3(1) + 2)

h
=

3h

h

which equals 3 for h 6= 0. The value which any polynomial expression in h approaches as h

approaches 0 may be determined by setting h equal to 0. Note that before the h is removed
from the denominator by finding an expression which is equivalent as long as h 6= 0, the
expression is not a polynomial in h and cannot even be evaluated at h = 0.

In this case, the polynomial expression, 3, is a constant and does not even involve h.
Evaluating the polynomial p(h) = 3 at h = 0 gives p(0) = 3, so this ‘difference quotient’
approaches 3 as h approaches 0. Since the curve y = f(x) is a straight line with slope 3,
we’d better hope that the slope of a curve computation reduces to the same slope as the
line, and indeed it does. Since f(1) = 5, The tangent line at (1, 5) is y − 5 = 3(x − 0).

Note on the interpretation and manipulation of expressions of the form f(x + h).:
Many students interpret f(x + h) purely symbolically and literally, symbolically replace
any occurence of x with x + h. This is not a totally unreasonable idea since we teach to
‘put what is in the parentheses whereever x is’, but is correct in the context. For instance,
if f(x) = 4x one might incorrectly write f(x + h) = 4x + h, or if g(x) = x2, one might
incorrectly write g(x + h) = x + h2. One ‘systematic’ way to avoid this would be always
to replace x by what is between the parentheses surrounded by parentheses. In the above
examples this would correctly give f(x + h) = 4(x + h) and g(x + h) = (x + h)2. The only
problem is for ‘simple’ arguments in the parentheses it will give strange looking, yet not
incorrect, extraneous parentheses, for example f(a) = 4(a) or g(3) = (3)2. You can easily
remove these when you are sure they are not needed. An essentially equivalent conceptual
approach is to understand the meaning of f(x) = 4x as ‘the function which multiplies its
input (argument) by 4, so f(x+h) says multiply x+h by 4, and we know 4 times x+h is
4(x + h) = 4x + 4h and not 4x + h. Similarly g(x) = x2 is the function which squares its
input, so g(x+ h) is the x + h squared, which is (x + h)2 = x2 + 2xh + h2, and not x + h2.

The following problems also use the above fact that (x + h)2 = x2 + 2xh + h2, and
(x + h)3 = x3 + 3x2h + 3xh2 + h3. These are special cases of the binomial rule

(x + h)n =

n∑

j=0

C(n, j)xn−jhj

where C(n, j) is the number of different ways of choosing j objects from a set of n objects
when the order does not matter.

See http://www.math.utah.edu/∼palais/mst/Pascal.html for a flash application con-
necting different interpretations of C(n, j) and demonstrating concretely the recursive for-
mula known as Pascal’s Triangle, C(n, j) = C(n − 1, j − 1) + C(n − 1, j) and the direct
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formula for computing C(n, j) = n!
j!(n−j)! . (The symbol n!, spoken n factorial, represents

the product of the positive integers less than or equal to n: n! = 1 · 2 · · ·n.

One of the coolest and most powerful results accessible in the first year of calculus is
the ability to generalize the binomial rule to the situation where n is not a positive integer,
and develop analogous formulas for 1

1+x = (1 + x)−1 and
√

1 + x = (1 + x)1/2, etc.

(2)
f(0 + h) − f(0)

h
=

h2 − 0

h
=

h2

h

which equals h for h 6= 0. Evaluating the polynomial p(h) = h at h = 0 gives p(0) = h, so
this ‘difference quotient’ approaches 0 as h approaches 0. The curve y = f(x) is a parabola
with its vertex pointing down at (0, 0) and by symmetry, we would expect its slope there
would be 0 and indeed it does. The tangent line is horizontal: y − 0 = 0(x − 0).

(3)
f(2 + h) − f(2)

h
=

(2 + h)2 − 22

h
=

4 + 4h + h2 − 4

h
=

4h + h2

h

which equals 4 + h for h 6= 0. Evaluating the polynomial p(h) = 4 + h at h = 0 gives
p(0) = 4, so this ‘difference quotient’ approaches 4 as h approaches 0. The curve y = f(x)
is a parabola. Since f(2) = 4, The tangent line at (2, 4) is y − 4 = 4(x − 2).

(4)

f(1 + h) − f(1)

h
=

(1 + h)2 − 3 − (12 − 3)

h
=

1 + 2h + h2 − 3 − (1 − 3)

h
=

2h + h2

h

which equals 2 + h for h 6= 0. Evaluating the polynomial p(h) = 2 + h at h = 0 gives
p(0) = 2, so this ‘difference quotient’ approaches 2 as h approaches 0. The curve y = f(x)
is a parabola. Since f(1) = −2, The tangent line at (1,−2) is y − (−2) = 2(x − 1).

(5)
f(0 + h) − f(0)

h
=

h2 + 2h − 1 − (−1)

h
=

h2 + 2h

h

which equals h + 2 for h 6= 0. Evaluating the polynomial p(h) = h + 2 at h = 0 gives
p(0) = 2, so this ‘difference quotient’ approaches 2 as h approaches 0. The curve y = f(x)
is a parabola. Since f(0) = −1, The tangent line at (0,−1) is y − (−1) = 2(x − 0).

(6)

f(1 + h) − f(1)

h
=

3(1 + h)2 − 2 − (3(1)2 − 2)

h
=

3 + 6h + 3h2 − 2 − (3 − 2)

h
=

6h + 3h2

h

which equals 6 + 3h for h 6= 0. Evaluating the polynomial p(h) = 6 + 3h at h = 0 gives
p(0) = 6, so this ‘difference quotient’ approaches 6 as h approaches 0. The curve y = f(x)
is a parabola. Since f(1) = 1, The tangent line at (1, 1) is y − 1 = 6(x − 1).
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(7)

f(1 + h) − f(1)

h
=

(1 + h)3 − 13

h
=

1 + 3h + 3h2 + h3 − 1)

h
=

3h + 3h2 + h3

h

which equals 3 + 3h + h2 for h 6= 0. Evaluating the polynomial p(h) = 3 + 3h + h2 at
h = 0 gives p(0) = 3, so this ‘difference quotient’ approaches 3 as h approaches 0. Since
f(1) = 1, The tangent line at (1, 1) is y − 1 = 3(x − 1).

(8)
f(0 + h) − f(0)

h
=

h3 − 03

h
==

h3

h

which equals h2 for h 6= 0. Evaluating the polynomial p(h) = h2 at h = 0 gives p(0) = 0,
so this ‘difference quotient’ approaches 0 as h approaches 0. Since f(0) = 0, The tangent
line at (0, 0) is y − 0 = 0(x − 0).

(9)
f(x + h) − f(x)

h
=

(x + h) − x)

h
=

h

h

which equals 1 for h 6= 0. Evaluating the polynomial p(h) = 1 at h = 0 gives p(0) = 1, so
this ‘difference quotient’ approaches 1 as h approaches 0 for any value of x and f ′(x) = 1.
Since the curve y = f(x) is a straight line with slope 1, we’d better hope that the slope of
a curve computation reduces to the same slope as the line, and indeed it does.

(10)
f(x + h) − f(x)

h
=

2(x + h) + 5 − (2x + 5)

h
=

2h

h

which equals 2 for h 6= 0. Evaluating the polynomial p(h) = 2 at h = 0 gives p(0) = 2, so
this ‘difference quotient’ approaches 2 as h approaches 0 for any value of x and f ′(x) = 2.
Since the curve y = f(x) is a straight line with slope 2, we’d better hope that the slope of
a curve computation reduces to the same slope as the line, and indeed it does.

(11)

f(x + h) − f(x)

h
=

3(x + h)2 − 3x2)

h
=

3x2 + 6xh + 3h2 − 3x2

h
=

6xh + 3h2

h

which equals 6x + 3h for h 6= 0. Evaluating the polynomial p(h) = 6x + 3h at h = 0 gives
p(0) = 6x, so this ‘difference quotient’ approaches 6x as h approaches 0 for any value of x

and f ′(x) = 6x. The curve y = f(x) is a parabola, and it makes sense when x > 0 to the
right of the downward pointing vertes, the slope increases as x increases.

(12)
f(x + h) − f(x)

h
=

(x + h)2 − 2(x + h) + 3 − (x2 − 2x + 3)

h

=
x2 + 2xh + h2 − 2x − 2h + 3 − x2 + 2x − 3

h
=

2xh + h2 − 2h

h
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which equals 2x + h − 2 for h 6= 0. Evaluating the polynomial p(h) = 2x + h − 2 at h = 0
gives p(0) = 2x − 2, so this ‘difference quotient’ approaches 2x − 2 as h approaches 0 for
any value of x and f ′(x) = 2x − 2.

(13)

f(x + h) − f(x)

h
=

(x + h)3 − x3

h
=

x3 + 3x2h + 3xh2 + h3 − x3

h
=

3x2h + 3xh2 + h3

h

which equals 3x2 + 3xh + h2 for h 6= 0. Evaluating the polynomial p(h) = 3x2 + 3xh + h2

at h = 0 gives p(0) = 3x2, so this ‘difference quotient’ approaches 3x2 as h approaches 0
for any value of x and f ′(x) = 3x2.

(14)
f(x + h) − f(x)

h
=

(x + h)3 + (x + h)2 − (x3 − x2)

h

=
x3 + 3x2h + 3xh2 + h3 + x2 + 2xh + h2 − x3 − x2

h
=

3x2h + 3xh2 + h3 + 2xh + h2

h

which equals 3x2 + 3xh + h2 + 2x + h for h 6= 0. Evaluating the polynomial p(h) =
3x2 + 3xh + h2 + 2x + h at h = 0 gives p(0) = 3x2 + 2x, so this ‘difference quotient’
approaches 3x2 + 2x as h approaches 0 for any value of x and f ′(x) = 3x2 + 2x.

These examples should show you three patterns.

1. The derivative of the sum of functions will equal the sum of the derivatives:

If f(x) = u(x)+v(x) then f ′(x) = u′(x)+v′(x). The aspects of the computation that
always led to this did not have to do with the fact that the functions in the examples were
polynomials.

2. The derivative of a constant multiple of a functions will equal the same constant
multiple of its derivative:

If f(x) = c(u(x)) where c is a constant, then f ′(x) = c(u′(x)). The aspects of the
computation that always led to this did not have to do with the fact that the functions in
the examples were polynomials.

3. The derivative of f(x) = xn is f ′(x) = nxn−1 which comes from the binomial rule,
(x + h)n = xn + nxn−1h + . . ..

More solutions on the following page!!
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(15) The point-slope form of a line containing the point (−2, 4) is y−4 = m(x−(−2)),
where m is the slope. Using the definition of a tangent line, m = f ′(−2) where f(x) = x2,
so f ′(x) = 2x. Therefore, m = 2(−2) = −4 and the equation of the tangent line is y− 4 =
−4(x − (−2)). Note that we only need to be given the x-value, −2, from which we could
compute the corresponding y-value, f(−2) = 4. The given equation y − 4 = −4(x− (−2))
corresponds to the form given in the notes, y − f(a) = f ′(a)(x − a) with f(x) = x2 and
a = −2. Depending on the situation, you may or may not wish to ‘simplify’ (x− (−2)) to
x +2 because the first form exhibits the key information more clearly, and from this point
of view, the latter form is not a ‘simplification’.

(16) The point-slope form of a line containing the point (2,−2) is y−(−2) = m(x−2),
where m is the slope. Using the definition of a tangent line, m = f ′(2) where f(x) = x2−3x,
so f ′(x) = 2x − 3. Therefore, m = 2(2) − 3 = 1 and the equation of the tangent line is
y−(−2) = 1(x−2). Note that we only need to be given the x-value, 2, from which we could
compute the corresponding y-value, f(2) = −2. The given equation y − (−2) = 1(x − 2)
corresponds to the form given in the notes, y − f(a) = f ′(a)(x − a) with f(x) = x2 − 3x

and a = 2. Again, whether you choose to ‘simplify’ (y − (−2)) to y + 2 depends on the
situation. Using ‘+c’ may save an arithmetic operation in a computation, but −(−c) may
have more clarity.
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