Solutions for Introduction to Polynomial Calculus

Section 2 Problems - The Slope of a Curve

Bob Palais

$$
\begin{equation*}
\frac{f(1+h)-f(1)}{h}=\frac{3(1+h)+2-(3(1)+2)}{h}=\frac{3 h}{h} \tag{1}
\end{equation*}
$$

which equals 3 for $h \neq 0$. The value which any polynomial expression in h approaches as h approaches 0 may be determined by setting h equal to 0 . Note that before the h is removed from the denominator by finding an expression which is equivalent as long as $h \neq 0$, the expression is not a polynomial in h and cannot even be evaluated at $h=0$.

In this case, the polynomial expression, 3 , is a constant and does not even involve h. Evaluating the polynomial $p(h)=3$ at $h=0$ gives $p(0)=3$, so this 'difference quotient' approaches 3 as h approaches 0 . Since the curve $y=f(x)$ is a straight line with slope 3 , we'd better hope that the slope of a curve computation reduces to the same slope as the line, and indeed it does. Since $f(1)=5$, The tangent line at $(1,5)$ is $y-5=3(x-0)$.

Note on the interpretation and manipulation of expressions of the form $f(x+h)$: Many students interpret $f(x+h)$ purely symbolically and literally, symbolically replace any occurence of x with $x+h$. This is not a totally unreasonable idea since we teach to 'put what is in the parentheses whereever x is', but is correct in the context. For instance, if $f(x)=4 x$ one might incorrectly write $f(x+h)=4 x+h$, or if $g(x)=x^{2}$, one might incorrectly write $g(x+h)=x+h^{2}$. One 'systematic' way to avoid this would be always to replace x by what is between the parentheses surrounded by parentheses. In the above examples this would correctly give $f(x+h)=4(x+h)$ and $g(x+h)=(x+h)^{2}$. The only problem is for 'simple' arguments in the parentheses it will give strange looking, yet not incorrect, extraneous parentheses, for example $f(a)=4(a)$ or $g(3)=(3)^{2}$. You can easily remove these when you are sure they are not needed. An essentially equivalent conceptual approach is to understand the meaning of $f(x)=4 x$ as 'the function which multiplies its input (argument) by 4 , so $f(x+h)$ says multiply $x+h$ by 4 , and we know 4 times $x+h$ is $4(x+h)=4 x+4 h$ and not $4 x+h$. Similarly $g(x)=x^{2}$ is the function which squares its input, so $g(x+h)$ is the $x+h$ squared, which is $(x+h)^{2}=x^{2}+2 x h+h^{2}$, and not $x+h^{2}$.

The following problems also use the above fact that $(x+h)^{2}=x^{2}+2 x h+h^{2}$, and $(x+h)^{3}=x^{3}+3 x^{2} h+3 x h^{2}+h^{3}$. These are special cases of the binomial rule

$$
(x+h)^{n}=\sum_{j=0}^{n} C(n, j) x^{n-j} h^{j}
$$

where $C(n, j)$ is the number of different ways of choosing j objects from a set of n objects when the order does not matter.

See http://www.math.utah.edu/~palais/mst/Pascal.html for a flash application connecting different interpretations of $C(n, j)$ and demonstrating concretely the recursive formula known as Pascal's Triangle, $C(n, j)=C(n-1, j-1)+C(n-1, j)$ and the direct
formula for computing $C(n, j)=\frac{n!}{j!(n-j)!}$. (The symbol $n!$, spoken n factorial, represents the product of the positive integers less than or equal to n : $n!=1 \cdot 2 \cdots n$.

One of the coolest and most powerful results accessible in the first year of calculus is the ability to generalize the binomial rule to the situation where n is not a positive integer, and develop analogous formulas for $\frac{1}{1+x}=(1+x)^{-1}$ and $\sqrt{1+x}=(1+x)^{1 / 2}$, etc.

$$
\begin{equation*}
\frac{f(0+h)-f(0)}{h}=\frac{h^{2}-0}{h}=\frac{h^{2}}{h} \tag{2}
\end{equation*}
$$

which equals h for $h \neq 0$. Evaluating the polynomial $p(h)=h$ at $h=0$ gives $p(0)=h$, so this 'difference quotient' approaches 0 as h approaches 0 . The curve $y=f(x)$ is a parabola with its vertex pointing down at $(0,0)$ and by symmetry, we would expect its slope there would be 0 and indeed it does. The tangent line is horizontal: $y-0=0(x-0)$.

$$
\begin{equation*}
\frac{f(2+h)-f(2)}{h}=\frac{(2+h)^{2}-2^{2}}{h}=\frac{4+4 h+h^{2}-4}{h}=\frac{4 h+h^{2}}{h} \tag{3}
\end{equation*}
$$

which equals $4+h$ for $h \neq 0$. Evaluating the polynomial $p(h)=4+h$ at $h=0$ gives $p(0)=4$, so this 'difference quotient' approaches 4 as h approaches 0 . The curve $y=f(x)$ is a parabola. Since $f(2)=4$, The tangent line at $(2,4)$ is $y-4=4(x-2)$.

$$
\begin{equation*}
\frac{f(1+h)-f(1)}{h}=\frac{(1+h)^{2}-3-\left(1^{2}-3\right)}{h}=\frac{1+2 h+h^{2}-3-(1-3)}{h}=\frac{2 h+h^{2}}{h} \tag{4}
\end{equation*}
$$

which equals $2+h$ for $h \neq 0$. Evaluating the polynomial $p(h)=2+h$ at $h=0$ gives $p(0)=2$, so this 'difference quotient' approaches 2 as h approaches 0 . The curve $y=f(x)$ is a parabola. Since $f(1)=-2$, The tangent line at $(1,-2)$ is $y-(-2)=2(x-1)$.

$$
\begin{equation*}
\frac{f(0+h)-f(0)}{h}=\frac{h^{2}+2 h-1-(-1)}{h}=\frac{h^{2}+2 h}{h} \tag{5}
\end{equation*}
$$

which equals $h+2$ for $h \neq 0$. Evaluating the polynomial $p(h)=h+2$ at $h=0$ gives $p(0)=2$, so this 'difference quotient' approaches 2 as h approaches 0 . The curve $y=f(x)$ is a parabola. Since $f(0)=-1$, The tangent line at $(0,-1)$ is $y-(-1)=2(x-0)$.

$$
\begin{equation*}
\frac{f(1+h)-f(1)}{h}=\frac{3(1+h)^{2}-2-\left(3(1)^{2}-2\right)}{h}=\frac{3+6 h+3 h^{2}-2-(3-2)}{h}=\frac{6 h+3 h^{2}}{h} \tag{6}
\end{equation*}
$$

which equals $6+3 h$ for $h \neq 0$. Evaluating the polynomial $p(h)=6+3 h$ at $h=0$ gives $p(0)=6$, so this 'difference quotient' approaches 6 as h approaches 0 . The curve $y=f(x)$ is a parabola. Since $f(1)=1$, The tangent line at $(1,1)$ is $y-1=6(x-1)$.

$$
\begin{equation*}
\frac{f(1+h)-f(1)}{h}=\frac{(1+h)^{3}-1^{3}}{h}=\frac{\left.1+3 h+3 h^{2}+h^{3}-1\right)}{h}=\frac{3 h+3 h^{2}+h^{3}}{h} \tag{7}
\end{equation*}
$$

which equals $3+3 h+h^{2}$ for $h \neq 0$. Evaluating the polynomial $p(h)=3+3 h+h^{2}$ at $h=0$ gives $p(0)=3$, so this 'difference quotient' approaches 3 as h approaches 0 . Since $f(1)=1$, The tangent line at $(1,1)$ is $y-1=3(x-1)$.

$$
\begin{equation*}
\frac{f(0+h)-f(0)}{h}=\frac{h^{3}-0^{3}}{h}==\frac{h^{3}}{h} \tag{8}
\end{equation*}
$$

which equals h^{2} for $h \neq 0$. Evaluating the polynomial $p(h)=h^{2}$ at $h=0$ gives $p(0)=0$, so this 'difference quotient' approaches 0 as h approaches 0 . Since $f(0)=0$, The tangent line at $(0,0)$ is $y-0=0(x-0)$.

$$
\begin{equation*}
\frac{f(x+h)-f(x)}{h}=\frac{(x+h)-x)}{h}=\frac{h}{h} \tag{9}
\end{equation*}
$$

which equals 1 for $h \neq 0$. Evaluating the polynomial $p(h)=1$ at $h=0$ gives $p(0)=1$, so this 'difference quotient' approaches 1 as h approaches 0 for any value of x and $f^{\prime}(x)=1$. Since the curve $y=f(x)$ is a straight line with slope 1 , we'd better hope that the slope of a curve computation reduces to the same slope as the line, and indeed it does.

$$
\begin{equation*}
\frac{f(x+h)-f(x)}{h}=\frac{2(x+h)+5-(2 x+5)}{h}=\frac{2 h}{h} \tag{10}
\end{equation*}
$$

which equals 2 for $h \neq 0$. Evaluating the polynomial $p(h)=2$ at $h=0$ gives $p(0)=2$, so this 'difference quotient' approaches 2 as h approaches 0 for any value of x and $f^{\prime}(x)=2$. Since the curve $y=f(x)$ is a straight line with slope 2, we'd better hope that the slope of a curve computation reduces to the same slope as the line, and indeed it does.

$$
\begin{equation*}
\frac{f(x+h)-f(x)}{h}=\frac{\left.3(x+h)^{2}-3 x^{2}\right)}{h}=\frac{3 x^{2}+6 x h+3 h^{2}-3 x^{2}}{h}=\frac{6 x h+3 h^{2}}{h} \tag{11}
\end{equation*}
$$

which equals $6 x+3 h$ for $h \neq 0$. Evaluating the polynomial $p(h)=6 x+3 h$ at $h=0$ gives $p(0)=6 x$, so this 'difference quotient' approaches $6 x$ as h approaches 0 for any value of x and $f^{\prime}(x)=6 x$. The curve $y=f(x)$ is a parabola, and it makes sense when $x>0$ to the right of the downward pointing vertes, the slope increases as x increases.

$$
\begin{align*}
& \frac{f(x+h)-f(x)}{h}=\frac{(x+h)^{2}-2(x+h)+3-\left(x^{2}-2 x+3\right)}{h} \tag{12}\\
= & \frac{x^{2}+2 x h+h^{2}-2 x-2 h+3-x^{2}+2 x-3}{h}=\frac{2 x h+h^{2}-2 h}{h}
\end{align*}
$$

which equals $2 x+h-2$ for $h \neq 0$. Evaluating the polynomial $p(h)=2 x+h-2$ at $h=0$ gives $p(0)=2 x-2$, so this 'difference quotient' approaches $2 x-2$ as h approaches 0 for any value of x and $f^{\prime}(x)=2 x-2$.

$$
\begin{equation*}
\frac{f(x+h)-f(x)}{h}=\frac{(x+h)^{3}-x^{3}}{h}=\frac{x^{3}+3 x^{2} h+3 x h^{2}+h^{3}-x^{3}}{h}=\frac{3 x^{2} h+3 x h^{2}+h^{3}}{h} \tag{13}
\end{equation*}
$$

which equals $3 x^{2}+3 x h+h^{2}$ for $h \neq 0$. Evaluating the polynomial $p(h)=3 x^{2}+3 x h+h^{2}$ at $h=0$ gives $p(0)=3 x^{2}$, so this 'difference quotient' approaches $3 x^{2}$ as h approaches 0 for any value of x and $f^{\prime}(x)=3 x^{2}$.

$$
\begin{gather*}
\frac{f(x+h)-f(x)}{h}=\frac{(x+h)^{3}+(x+h)^{2}-\left(x^{3}-x^{2}\right)}{h} \tag{14}\\
=\frac{x^{3}+3 x^{2} h+3 x h^{2}+h^{3}+x^{2}+2 x h+h^{2}-x^{3}-x^{2}}{h}=\frac{3 x^{2} h+3 x h^{2}+h^{3}+2 x h+h^{2}}{h}
\end{gather*}
$$

which equals $3 x^{2}+3 x h+h^{2}+2 x+h$ for $h \neq 0$. Evaluating the polynomial $p(h)=$ $3 x^{2}+3 x h+h^{2}+2 x+h$ at $h=0$ gives $p(0)=3 x^{2}+2 x$, so this 'difference quotient' approaches $3 x^{2}+2 x$ as h approaches 0 for any value of x and $f^{\prime}(x)=3 x^{2}+2 x$.

These examples should show you three patterns.

1. The derivative of the sum of functions will equal the sum of the derivatives:

If $f(x)=u(x)+v(x)$ then $f^{\prime}(x)=u^{\prime}(x)+v^{\prime}(x)$. The aspects of the computation that always led to this did not have to do with the fact that the functions in the examples were polynomials.
2. The derivative of a constant multiple of a functions will equal the same constant multiple of its derivative:

If $f(x)=c(u(x))$ where c is a constant, then $f^{\prime}(x)=c\left(u^{\prime}(x)\right)$. The aspects of the computation that always led to this did not have to do with the fact that the functions in the examples were polynomials.
3. The derivative of $f(x)=x^{n}$ is $f^{\prime}(x)=n x^{n-1}$ which comes from the binomial rule, $(x+h)^{n}=x^{n}+n x^{n-1} h+\ldots$.

More solutions on the following page!!

(15) The point-slope form of a line containing the point $(-2,4)$ is $y-4=m(x-(-2))$, where m is the slope. Using the definition of a tangent line, $m=f^{\prime}(-2)$ where $f(x)=x^{2}$, so $f^{\prime}(x)=2 x$. Therefore, $m=2(-2)=-4$ and the equation of the tangent line is $y-4=$ $-4(x-(-2))$. Note that we only need to be given the x-value, -2 , from which we could compute the corresponding y-value, $f(-2)=4$. The given equation $y-4=-4(x-(-2))$ corresponds to the form given in the notes, $y-f(a)=f^{\prime}(a)(x-a)$ with $f(x)=x^{2}$ and $a=-2$. Depending on the situation, you may or may not wish to 'simplify' $(x-(-2))$ to $x+2$ because the first form exhibits the key information more clearly, and from this point of view, the latter form is not a 'simplification'.
(16) The point-slope form of a line containing the point $(2,-2)$ is $y-(-2)=m(x-2)$, where m is the slope. Using the definition of a tangent line, $m=f^{\prime}(2)$ where $f(x)=x^{2}-3 x$, so $f^{\prime}(x)=2 x-3$. Therefore, $m=2(2)-3=1$ and the equation of the tangent line is $y-(-2)=1(x-2)$. Note that we only need to be given the x-value, 2 , from which we could compute the corresponding y-value, $f(2)=-2$. The given equation $y-(-2)=1(x-2)$ corresponds to the form given in the notes, $y-f(a)=f^{\prime}(a)(x-a)$ with $f(x)=x^{2}-3 x$ and $a=2$. Again, whether you choose to 'simplify' $(y-(-2))$ to $y+2$ depends on the situation. Using ' $+c$ ' may save an arithmetic operation in a computation, but $-(-c)$ may have more clarity.

