Solutions for Introduction to Polynomial Calculus

Section 1 Problems

Bob Palais

The point-slope form of the equation of a line says that the rise over the run between an arbitrary point on a line (x, y) and a particular point $\left(x_{0}, y_{0}\right)$ on that line is constant, m, called the slope of the line. This describes a relationship of direct proportionality or linearity between the rise and the run. The rise is the change in $y, y-y_{0}$, and the run is the change in $x, x-x_{0}$, so $\frac{y-y_{0}}{x-x_{0}}=m$. Since the ratio is undefined for the point $\left(x_{0}, y_{0}\right)$, it is common to cross multiply so that this point fits the equation explicitly: $y-y_{0}=m\left(x-x_{0}\right)$. If you are given two points on a line, they may be used to compute its slope, and either may be used in the point-slope form.

So for (1)-(6) I'm giving not only the slope which the problem asks for but also the point-slope equation of the line.
(1) $m=\frac{2-1}{1-0}=1$ and the equation is $y-1=1(x-0)$ or $y-2=1(x-1)$.
(2) $m=\frac{7-3}{4-2}=2$ and the equation is $y-3=2(x-2)$ or $y-7=2(x-4)$.
(3) $m=\frac{2-1}{3-1}=\frac{1}{2}$ and the equation is $y-1=\frac{1}{2}(x-1)$ or $y-2=\frac{1}{2}(x-3)$.
(4) $m=\frac{2-4}{3-1}=-1$ and the equation is $y-4=-1(x-1)$ or $y-2=-1(x-3)$.
(5) $m=\frac{1-3}{3-(-2)}=-\frac{2}{5}$ and the equation is $y-3=-\frac{2}{5}(x-(-2))$ or $y-1=-\frac{2}{5}(x-3)$.
(6) $m=\frac{2-0}{0-(-2)}=1$ and the equation is $y-0=1(x-(-2))$ or $y-2=1(x-0)$.
(7) $y-0=2(x-0)$
(8) $y-2=5(x-1)$
(9) $y-(-1)=-3(x-2)$
(10) $y-1=\frac{1}{2}(x-1)$
(11) $y-5=-\frac{2}{3}(x-0)$
(12) $y-0=7(x-(-2))$

I intentionally prefer the $(x-(-a))$ form to $(x+a)$ because it displays the important information more clearly. I do not require or encourage oversimplification of answers! Conversion to slope-intercept form is not required or encouraged either as long as you know how to do it. Usually points other than $x=0$ are more important and it is better to refer equations to the point of interest. The slope-intercept form is nice when you wish to extend to polynomials in standard form: $a_{0}+a_{1} x+\ldots+a_{n} x^{n}$, but even polynomials have useful forms adapted to another point: $a_{0}+a_{1}(x-c)+\ldots+a_{n}(x-c)^{n}$, or even useful 'multiple center' forms: $a_{0}+\left(x-c_{1}\right)\left(a_{1}+\ldots+\left(x-c_{n}\right)\left(a_{n}\right]\right.$.
(13) $y=3 x+1$
(14) $y=\frac{4}{3} x+2$
(15) Put the equation in slope-intercept form by adding $2 y$ to both sides, subtracting 4 from both sides, and dividing by $2: y=3 x-2$, so the slope is 3 and the y-intercept is -2 .
(16) Put the equation in slope-intercept form by subtracting $2 x$ from both sides, and dividing by 5: $y=-\frac{2}{5} x+\frac{3}{5}$, so the slope is $-\frac{2}{5}$ and the y-intercept is $\frac{3}{5}$.
(17) Parallel lines have the same slope, so $y-1=3(x-1)$
(18) The equation of any non-vertical line containing the point $(2,-1)$ is $y-(-1)=$ $m(x-2)$. Parallel lines have the same slope, so $m=\frac{2-0}{3-2}=2$. So the equation is $y-(-1)=2(x-2)$.
(19) The slope of any line perpendicular to a line with slope $m \neq 0$ is $-\frac{1}{m}$, the 'negative reciprocal' rule. So $y-0=-\frac{1}{3}(x-1)$.
(20) To find the midpoint of two points and the bisector of the segment joining them, compute the simple average their horizontal and vertical coordinates respectively: $\frac{0+2}{2}=1$ and $\frac{0+4}{2}=2$ so the line goes through the point $(1,2)$. The slope of the segment is $\frac{4-0}{2-0}=2$, so the slope of any line perpendicular to it is $-\frac{1}{2}$ and the equation of the line with this slope through that point is $y-2=-\frac{1}{2}(x-1)$.
(21) The slope of any line perpendicular to a vertical line $x=c$ is $m=0$. So $y-1=0$ or $y=1$ whose graph is horizontal.
(22) The equation of any line perpendicular to a horizontal line $y=c$ is of the form $x=c$ and its slope is undefined. So $x=2$.
(23) The line $2 y-x=4$ has slope $\frac{1}{2}$ so the equation of a line through the point $(1,1)$ which is perpendicular to this line is $y-1=-2(x-1)$. The intersection of these lines may be found by solving the latter for $y=-2 x+3$ and substituting into the equation of the first line: $2(-2 x+3)-x=4$ so $x=\frac{2}{5}$ and $y=\frac{11}{5}$. By Pythagoras, this is the closest point on the line $2 y-x=4$ to the point $(1,1)$ because the distance to any other point is the hypotenuse of a right triangle with one side being the segment between these points. This distance is $\sqrt{\left(\frac{2}{5}-1\right)^{2}+\left(\frac{11}{5}-1\right)^{2}}=\frac{3 \sqrt{5}}{5}$.
(24) The line $y=2 x-3$ has slope 2 so the equation of a line through the point $(0,1)$ which is perpendicular to this line is $y-1=-\frac{1}{2}(x-0)$. The intersection of these lines may be found by substituting this into the equation of the first line: $-\frac{1}{2} x+1=2 x-3$ so $x=\frac{8}{5}$ and $y=\frac{1}{5}$. The distance from $(0,1)$ to this point, hence to the line, is This distance is $\sqrt{\left(\frac{8}{5}-0\right)^{2}+\left(\frac{1}{5}-1\right)^{2}}=\frac{4 \sqrt{5}}{5}$.
(25) The point $(0,0)$ is on the line $y=2 x$. Both lines have slope 2 so the equation of a line through the point $(0,0)$ which is perpendicular to the line $y=2 x+3$ line is $y-0=-\frac{1}{2}(x-0)$. The intersection of those lines may be found by substituting one into other: $-\frac{1}{2} x=2 x+3$ so $x=-\frac{6}{5}$ and $y=\frac{3}{5}$. The distance from $(0,0)$ to this point,
which is the shortest distance between point on one line and any point on the other, is $\sqrt{\left(-\frac{6}{5}-0\right)^{2}+\left(\frac{3}{5}-1\right)^{2}}=\frac{3 \sqrt{5}}{5}$.

