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1210-90 Exam 2

K E >/ Fall 2013

Instructions.  Show all work and include appropriate explanations when necessary. A correct answer
unaccompanied by work may not receive full credit. Please try to do all work in the space provided. Please
circle your final answers.
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1. (25pts) For this problem, consider the function

fz) = z* — 423 + 422 +1.
(a) (4pts) Find f'(z).
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(b) (5pts) Find the three critical points of f(x).
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(c) (4pts) List the interval(s) on which f(z) is increasing and the interval(s) on which f(z) is de-
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(d) (4pts) Find f"(z).

£y = 12x"24x + &

(e) (4pts) Use the Second Derivative Test to determine whether each critical point found in part (b)
is a local minimum or a local maximum.
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(f) (4pts) Find the maximum and minimum values of f(z) on the interval [—1,00). Write ‘DNE’ in

the blank if there is none. :! Valves °+ &(JS o | ) w 0 lWR“-.
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2. (8pts) An ice cube is melting in the hot sun. Suppose the ice cube is losing volume at a rate of .24
cm®/min. How fast is the side length of the cube (labeled z in the picture below) decreasing when

the volume of the ice cube is 8 cm3? Assume that the cube remains perfectly cubical at all times and

recall the that the volume of a cube is V = z8.
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3. (8pts) Find the equation of the tangent line to the following curve at the point (1, —1).

2y +xy’ + 2y = -2
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4. (5pts) Find the value ¢ guaranteed by the Mean Value Theorem for f(z) = 2% + z + 3 on the interval
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5. (5pts) Compute z5, the second approximation to the root of
22 —524+7=0
using Newton’s Method with initial approximation z; = 3.
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6. (10pts) A cylindrical can with an open top is being manufactured out of 487 cm? of aluminum. What
are the radius and height (labeled 7 and h in the picture below) of the can which holds the most
volume? Maximize the volume of the can V = 7r2h subject to the fixed surface area A = 7r? + 27rh.
Note: You must use calculus to get credit!!
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7. (16pts) Find the indicated general antiderivatives: Remember +C!

(a) (4pts) / (28 + 22 +1) do
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8. (12pts) The graph of y = f(z) is found in Figure A below.
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(a) (6pts) Approximate f ( ) dx usmg a Riemann sum with 5 subintervals of equal length and

the sample points bemg (the mldpomts of the subintervals.
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Figure A

5
) (6pts) Find the exact value of / f(z) dz. Hint: Use geometry and the area interpretation of
-5
the definite integral.
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9. (11pts) At time ¢t = 0, a driver in a car traveling at 100 feet per second applies the brakes. Suppose
the car decelerates at a constant 20 feet per second squared.

(a) (4pts) Find v(t), the velocity of the car in feet per second after ¢ seconds.
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(b) (3pts) How many seconds elapse before the car comes to a complete stop? \D c

(c) (4pts) How many feet does the car travel before it comes to a complete stop?
St) =/vl+/odb = — 0ty l0it +C .
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