DISSECTIONS OF POLYGONS AND POLYHEDRA

DAN CIUBOTARU

(1) Prove the Pythagorean theorem, by reinterpreting it into a problem about dissecting two given squares and glue the resulting pieces to obtain a single square.

(2) We say that two polygons are (scissor-)equivalent if you can cut one of them into pieces and reassemble the resulting pieces to obtain the second polygon.

Is an arbitrary triangle equivalent to a rectangle?

(3) Is a rectangle equivalent to a square?

(4) (The Bolyai-Gerwien Theorem) Any polygon is equivalent to any other polygon.

(5) Consider the statement: \(P(n) = "A \text{ square can be dissected into } n \text{ squares (not necessarily equal)}". \) For what values of \(n \geq 2 \) is \(P(n) \) true?

(6) Similar problem with equilateral triangles in place of squares.

(7) Show that a cube can be cut into \(n \) smaller cubes for every \(n \geq 55 \). (perhaps the hardest case is \(n = 61 \).)

(8) We want to consider the analogue of the Bolyai-Gerwien theorem in 3 dimensions. The question we want to answer is if a regular tetrahedron is scissor-equivalent to a cube. Let \(P \) be a polyhedron. Max Dehn defined the following invariant of \(P \):

\[
D(P) = \sum_{e} \text{length}(e) f(e),
\]

where \(e \) varies over the edges of \(P \), and \(f : \mathbb{R} \to \mathbb{R} \) is a function with the following properties:

(a) \(f(0) = 0 \);
(b) \(f(x + \pi) = f(x) \), for all \(x \) (i.e., \(f \) is periodic with period \(\pi \));
(c) \(f(x + y) = f(x) + f(y) \), for all \(x, y \) (i.e., \(f \) is additive).

(Many such functions exist!) Show that if two polyhedra are equivalent, then they have the same Dehn invariant. (Hint: analyze what happens with the Dehn invariant if we cut a polyhedron \(P \) into \(n \) smaller polyhedra.)

(9) Compute the Dehn invariants of the cube and regular tetrahedron, and show that there exist choices of functions \(f \) for which the two invariants differ. In particular, the analogue of the Bolyai-Gerwien theorem cannot hold in 3 dimensions.

REFERENCES

(D. Ciubotaru) DEPT. OF MATHEMATICS, UNIVERSITY OF UTAH, SALT LAKE CITY, UT 84112
E-mail address: ciub0@math.utah.edu

Date: April 22, 2010.