
PICK'S THEOREM

PROBLEM: Find the area of a polygon whose vertices lie on a unitary
square grid.

For example:
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There is a conceptually easy, but laborious solution: I can chop my
complicated polygon into easier shapes, compute the areas of these easy
shapes and add them up. In the previous example, the problem reduces to
computing the area of six triangles and one parallelogram.

But now imagine a 100,000 � 100,000 square grid, and start to zig-zag
like crazy to obtain a monstrously complicated shape...would you really want
to go through the previously described process?



Fortunately we don't have to. Mr. Pick tells us that there is a nice,
beautiful, easy formula that tells us the area of the polygon if we know:

1. the number of grid points inside the polygon (which we'll denote by I);

2. the number of grid points on the boundary of the polygon (which will
be denoted by B).

In our example:
I = 2; B = 13

So from these two guys we should be able to cook up 7 and 1=2...mmmh...easier
said than done, Mr. Pick!

Let's try and �gure out this mysterious formula. Let's �rst try out some
extremely easy shapes and see if we spot any pattern:
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There seems to be some sort of pattern: every time I make my rectangle
one unit larger, the area increases by one and the number of boundary points
by two. In a formula, this means:

B = 2A + 2



A =
B

2
� 1

Can this be the right formula? Our hopes are soon dismissed...if we check
it on our �rst example, it doesn't turn out 7 and 1=2. (bummer)

But there is one conceptual thing to observe. None of our objects had
any interior points. Let's then again experiment on a class of extremely easy
objects that do have interior points and see what happens:
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A-HAH!! Clear like the sun on a sunny day!

A =
B

2
� 1 + I:

Is this it? Indeed, if we test it on our initial monster polygon we get the
desired result.

But this does not mean much. It may be just out of sheer luck that the
right result comes out in our particular example. We need to sit down and
�nd a PROOF of the formula.



The key observation is the following: suppose we start from a big polygon
R and we chop it into two smaller ones by joining two vertices, as in the
picture:
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Let's denote our \wannabe" formula by \Pick(polygon)"
(i.e. Pick(R) = BR

2
� 1 + IR).

Then I claim that

Pick(R) = Pick(P ) + Pick(Q):

This I will let you �gure out on your own. It's not too hard, but it
requires keeping track carefully of the number of interior points you lose and
the number of new boundary points you introduce in making the subdivision.

And now it is easy easy easy! Right? Well, not quite that easy, but what
is left is just a few observations that will reduce the problem to an extremely
easy one:

1. Every polygon, no matter how ugly, can be chopped up into triangles.
Hence if we prove that the formula is true for triangles, then by the
previous observation it will be true for any polygon.



2. Every triangle can be inscribed in a rectangle with sides parallel to the
grid, as in this picture:

(Be careful: there are some triangles for which this construction
\degenerates": can you �gure out which ones and what does the
decomposition look like?)

Hence, if we prove the formula for rectangles and right triangles then
it will hold for all triangles.

3. Every right triangle is \half" of a rectangle. So we really need to show
the formula for rectangles.

4. Every rectangle can be chopped up into unit squares. So we only need
to check that the formula holds for the unit square. But we already
did that (See the second picture in this handout!!!). So we are done!!!

(Isn't that cute?)

THE END

Inspiration and ideas for this handout come mostly from Ian Stewart's

book \Another �ne math you've got me into". Speci�cally, Pick's theorem is

treated in the section \How many Goats in the Orchard".


