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1. introduction: the 15-puzzle

In the late 1870’s the mathematical puzzlemaker Samuel Loyd introduced the now famous
15-puzzle. The game consists of a 4-by-4 grid together with 15 tiles numbered 1, 2, . . . , 15,
and a single vacant location on the grid.

151413

1211109

8765

4321

A legal move consisted of sliding a numbered tile into the vacant location. From the initial
configuration above, for instance, there are two legal moves: sliding the 12 down or the 15
to the right. The object of the puzzle is to use a sequence of legal moves to interchange the
position of the tiles labeled 14 and 15 while leaving all other tiles unchanged.

Loyd offered a prize of $1000 (a princely sum in 1870) for the first correct solution. The
puzzle swept quickly across America, then Europe, and in Loyd’s own words eventually
“drove the world crazy.” This was exaggeration, but perhaps not too much so. The math-
ematician W. E. Story, not notable himself for hyperbole, wrote in an 1879 issue of The
American Journal of Mathematics, America’s then premier mathematical publication,

The “15” puzzle for the last few weeks has been prominently before the
American public, and may safely be said to have engaged the attention of
nine out of ten persons of both sexes and of all ages and condition of the
community.

The hysteria surrounding the 15-puzzle must surely have delighted Loyd: he understood
from the outset that no solution is possible! In the next few weeks we’ll develop the machinery
to figure out why it is impossible. This turns out to be relatively easy. What is harder is to
figure out what configurations are possible to obtain from the original one using only legal
moves. This will be our ultimate goal1.

1A good reference is the excellent article, “A Modern Treatment of the 15-Puzzle,” by A. F. Archer in the

November 1999 issue of The American Mathematical Monthly. Much of this introduction was drawn from

that source.
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2. Parity of integers

Let’s start by considering the integers Z. One of the interesting features of Z is the
existence of the notion of parity, that is evenness and oddness. Somewhere in our distant
past we learned the basic rules

even plus even equals even

even plus odd equals odd

odd plus odd equals even,

and from those we can quickly derive the analogous rules for multiplication, as well as slightly
more complicated rules such as

the sum of an odd number of odd numbers is odd, (∗)

and so on.

This is so obvious and natural that we hardly ever think about it. But the notion of parity
can be surprisingly useful. Consider the following problem2. Suppose there are 33 people at
a party. Then we claim that it follows that at least one person at the party knows an even
number of people. (Here we assume that acquaintance is mutual — if you know someone,
then they know you — and we also allow for the possibility of total strangers attending who
don’t know anyone at all. In the latter case, the problem is trivial since zero is an even
number.) Here is how to prove our claim. For convenience, label the people at the party
as 1, 2, . . . , 31. Let ni denote the number of acquaintances that the ith person has. Since
acquaintance is mutual, the sum n1 + n2 + · · · + n31 must equal twice the total number of
pairs of acquaintances. Thus the sum n1 + n2 + · · ·+ n31 is even. By (∗) above, at least one
of the ni’s must be even, and the claim is proved. In fact the same argument shows that at
any party with an odd number of people, someone has an even number of acquaintances.

There are lots of other fun examples like this one. Our interest here isn’t so much in
discussing the notion of parity on Z, but instead on other sets (like sets of permutations).
Before we get to that, it’s perhaps useful to ask if there are notions of parity on other
familiar sets. For instance, can one make sense of evenness and oddness for the real numbersR? If you think about this, you’ll see that the best we can do is to consider the notion
of positivity and negativity. (We could have done this for Z too.) Positivity behaves well
for multiplications (negative times negative is positive, positive times positive is positive,
etc.), but doesn’t behave well with respect to addition. There simply isn’t a good notion of
evenness and oddness. (Even so, positivity is very useful. It turns up in applications such
as showing that the integral of an odd function over an interval symmetric about the origin
is identically zero, if defined.)

3. permutations

Now we turn to our objects of interest, permutations of n objects. For convenience, we
might as well label these objects 1, 2, . . . , n. We all have a heuristic understanding of what
permutations are: they’re simply an arbitrary rearrangement of the entries 1, 2, . . . , n. (So
there are exactly n! of them.) But we need to develop a good formalism and notation to
deal with them efficiently. We start with a definition.

2I found this in a book by Laslo Lovasz called Discrete Mathematics.
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Definition. A permutation of n letters is a function

σ : {1, 2, . . . , n} −→ {1, 2, . . . , n},

which is one-to-one (or equivalently onto — why?). The set of all such functions is denoted
Sn

With this definition in hand we can develop a good notation to work with permutations.
Fix σ ∈ Sn. We may denote map σ as follows,

(3.1) σ =

[

1 2 3 · · · n
σ(1) σ(2) σ(3) · · · σ(n)

]

The condition that σ is one-to-one means that there are no repeated entries in the bottom
row of (3.1); hence the bottom row of (3.1) is a rearrangement of the numbers 1, 2, . . . , n. So
this notation indeed recovers our heuristic notion of a permutation.

Notice that the top row in (3.1) is really superfluous. So we typically drop it from the
notation and instead write

(3.2) σ = [σ(1) σ(2) σ(3) · · · σ(n)]

There is another convenient notation, called the cycle notation, which is sometimes simpler
in certain instances. It’s best illustrated through an example. Consider

(3.3) σ = [2 5 4 3 6 7 1 8 9] .

The cycle notation “follows” particular elements of the rearrangement. First we start with
the element 1. According to (3.3), 1 gets mapped to 2 via σ; subsequently 2 gets mapped
to 5; then 5 is mapped to 6; 6 to 7; and finally 7 gets mapped back to 1. We represent this
information as a “cycle,”

(1 2 5 6 7)

meaning

(3.4) σ(1) = 2; σ(2) = 5; σ(5) = 6; σ(6) = 7; σ(7) = 1.

Notice that there was nothing special about starting with 2; we could have started with 5
or 6 or 7. So the following cycles all represent the data of (3.4),

(1 2 5 6 7) = (2 5 6 7 1) = (5 6 7 1 2) = (6 7 1 2 5) = (7 1 2 5 6).

But σ contains more information than this single cycle represents. So we need to trace
though the action of other elements. Starting with 3, we observe that 3 is mapped to 4, and
then 4 gets mapped back to 3. We capture this in the cycle

(34) = (43).

Next σ maps 8 to 8, so we get a single cycle (8). Similarly we get a single cycle (9). Thus
we can represent the permutation σ as a product of its cycles,

σ = (1 2 5 6 7)(3 4)(8)(9).

There are many other possibilities, arising both from the ambiguity of a single cycle and the
rearrangement of multiple cycles. For example,

σ = (9)(4 3)(5 6 7 1 2)(3 4)(8).
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Notice also once we know σ ∈ S9, the extra information of the single cycles (8) and (9) is
redundant; so we typically drop them from the notation and simple write

σ = (1 2 5 6 7)(3 4).

Exercise. Convert the following permutations to cycle notation.

(a) σa = [3 9 10 4 5 6 1 2 8 7]

(b) σb = [7 8 1 4 5 6 10 9 2 3]

(c) σc = [1 9 8 3 5 6 2 7 4 10]

(d) σd = [6 5 4 3 2 1 ]

(e) σe = [15 14 13 12 11 10 9 8 7 6 5 4 3 2 1]

Exercise. Convert the following examples of cycle notation to row notation.

(a) τa = (2 5 6 8) ∈ S10

(b) τb = (2 5 6 8) ∈ S8

(c) τc = (1 2 5)(3 4 6) ∈ S6

(d) τd = (1 2)(2 3 )(3 4)(4 5)(5 6) ∈ S6

The next thing to observe about elements of Sn is that we can compose them. That is if
we have two functions

σ, τ : {1, 2, . . . , n} −→ {1, 2, . . . , n},
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we may consider the functions

σ ◦ τ, τ ◦ σ : {1, 2, . . . , n} −→ {1, 2, . . . , n}.

Notice that if σ and τ are one-to-one, then so are σ◦τ and τ ◦σ. In other words, if σ, τ ∈ Sn,
then σ ◦ τ, τ ◦ σ ∈ Sn. We typically drop the ◦ from the notation, and simply write στ and
τσ.

Exercise. Refer to the previous two exercise and compute the following products:

(a) σaσb

(b) σbσa

(c) σaτa

(d) τaσc

(e) τcτd

(f) τdτc

Notice that
e := [1 2 3 · · · n]

is a very special element of Sn. It has the property that

τe = eτ = τ for all τ ∈ Sn.

Moreover, it is not hard to see that for all τ ∈ Sn, there exists τ−1 ∈ Sn such that

ττ−1 = τ−1τ = e.

Not surprisingly τ−1 is called the inverse of τ .
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Exercise. Refer to the preceding exercise and compute the following inverses.

(a) σ−1
a

(b) σ−1
c

(c) σ−1
e

(d) τ−1
a

(e) τ−1
c

(f) τ−1
e

4. length and parity of permutations

Out next task is to introduce a notion of “complexity” of a permutation. To get an idea
of what we might mean by this, consider the following three permutations in S5:

σ1 = [1 2 3 4 5]; σ2 = [2 1 4 3 5]; σ3 = [5 4 3 2 1].

We can visualize each by connecting the points in their two-row notation (as in (3.1)) as
follows:

From these pictures — which we will henceforth call string diagrams — it seems reasonable
to consider σ1 the least complex of three. Next in complexity is σ2. Finally σ3 appears to
be most complex. This intuition is based on the number of crossings in the string digram of
each σi. Our goal is to make this intuition precise. We being as follows.

Provisional Definition. Define the length of σ ∈ Sn to be the number of crossings in the
string diagram of σ.
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This definition is provisional because it is not precise enough. For instance, we could just
as well draw the string diagrams of σ3 as

or the string diagram of σ1 as

Notice that according to our first string diagram, the length of σ3 is 10, but from the second
diagram it is just 1. Similarly from the first diagram, the length of σ1 is 0, but from the
second it is definitely nonzero!

Thus the provisional definition doesn’t seem to be a good one. There are a couple of ways
one could fix things. The above examples show that we need to modify our notion of string
diagram: we want to pull the strings taut (to rule out the case of the second picture for σ1)
and we want to spread out “multiple crossing” (to avoid the second picture for σ3). This is a
little messy to make precise, so we try a second approach and ask: When do two string cross
in the refined notion of a string diagram? The answer is a little clever, but very intuitive
once one gets the hang of it:

Fix i < j. The ith and jth string cross if σ(i) > σ(j).

This is a nice precise condition, and it leads to our definition of length.

Definition. Define the length of σ ∈ Sn as follows,

l(σ) = the number of pairs (i, j) with 1 ≤ i < j ≤ n and σ(i) > σ(j).

For example, according to this definition,

l(σ1) = 0; l(σ2) = 2; l(σ3) = 10,

agreeing with the crossing in the nicely drawn string diagrams we initially wrote down. In
fact, it almost always useful to think of the length as counting crossing in nicely drawn string
diagrams. But we have to be careful since “nicely drawn” is rather imprecise!

Exercise. Compute the length of five of the permutations appearing in the previous section.

Next we want to ask if the (revised) definition of length has any good properties. For
example we can ask

(4.1) Does l(στ) = l(σ) + l(τ)?

A quick moment of thought shows this can’t be true. For instance, σ1 = σ2σ2 but

l(σ1) = 0 6= 2 + 2 = l(σ2) + l(σ2).

In fact, one can easily show that l(σ) = l(σ−1) (why?), so (4.1) fails miserably.

Can me modify the question in (4.1) to end up with something interesting?

Theorem 4.2. The length defines a good notion of parity on Sn. More precisely, fix σ, τ ∈
Sn. Then

(1) If l(σ) and l(τ) are even, then l(στ) is even;
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(2) If l(σ) and l(τ) are odd, then l(στ) is even;
(3) If l(σ) is even and l(τ) is odd, then l(στ) is odd;
(4) If l(σ) is even and l(τ) is odd, then l(τσ) is odd.

(Note: since στ need not equal τσ, (4) need not follow from (3).)

Because of the theorem, the next definition is useful.

Definition. If σ ∈ Sn and l(σ) is even, then we call σ an even permutation. Similarly if
l(σ) is odd, then we say that σ is an odd permutation. (Thus the theorem says that the
product of an even and an odd permutation is odd, and so on.)

We are now going to prove the the theorem. (You should try it on your own first!) To
begin we need two lemmas.

Lemma 4.3. For 1 ≤ i ≤ n − 1, define (in cycle notation),

si = (i i+1).

Then any element σ ∈ Sn may be written as a product of elements of the form si. (Note
that the elements si are exactly the elements of length 1. So the lemma says that every
permutation σ is a product of length 1 permutations.)

Proof of Lemma. The conclusion of the lemma says that any rearrangement of a list may
be accomplished by interchanging adjacent entries of the list. But this is obvious. (Note that
the expression in terms of the si need not be unique! This amounts to saying that you can
accomplish the same ultimate rearrangement by swapping different sequences of adjacent
entries.) �
Lemma 4.4. Fix σ ∈ Sn and 1 ≤ i ≤ n − 1, and define si as in Lemma 4.3. Then either

l(σsi) = l(σ) + 1 or l(σsi) = l(σ) − 1.

The same conclusion holds for l(siσ). (In other words: multiplying σ by si changes its
parity.)

Proof of Lemma. The proof is best visualized in terms of nicely drawn string diagrams
for σ. One possibility is that the strands for the string diagram for σ which begin at i and
i + i cross (that is, σ(i) > σ(i + 1)). In this case the effect of composing with si untangles
them. No other crossings are affected. So

l(σsi) = l(σ) − 1.

On the other hand, the only other possibility is that strands for the string diagram for σ
which begin at i and i + i do not cross (that is, σ(i) < σ(i + 1)). In this case the effect of
composing with si tangles them. No other crossings are affected, and so

l(σsi) = l(σ) + 1.

The argument for l(siσ) is identical. This proves the lemma. �
Using the lemmas, we can now prove the theorem.
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Proof of Theorem 4.2. We first prove (1). Fix σ, τ ∈ Sn and assume that both are even.
Using Lemma 4.3 write

σ = si1si2 · · · siN

τ = sj1sj2 · · · sjM
.

According to Lemma 4.4, N and M are even since both σ and τ are even. Now write

στ = si1si2 · · · siN sj1sj2 · · · sjM
.

There are an even number of terms on the right side. So Lemma 4.4 says that l(στ), and
hence στ , is even. This completes the proof of Theorem 4.2(1). The other parts of the
theorem follow in exactly the same way. �
Since the even permutation have good multiplicative properties — the product of two evens
is always again even — we set them aside.

Definition. The set of even permutations is called the alternating group on n letters and
denoted An.

Exercises.

1. Write down the three elements of A3 and the 12 elements of A4.

2. Write each element of A3 as a product of si’s. Do the same for A4.

3. Show that in A4 every element is a product of 3-cycles. (Compare Lemma 4.3.)

4. Show that sisi+1 = (i i+1 i+2).

5. Prove that An has n!/2 elements.

Exercise (4) above suggests a general result.

Theorem 4.5. For 1 ≤ i ≤ n − 2, let ti = (i i+1 i+2) ∈ An; so t−1
i = (i i+2 i+1). Every

element of An may be written as a product of 3-cycles of the form ti and t−1
i . (Compare

Lemma 4.3.)

Proof. Fix σ ∈ Sn. By Lemma 4.3, we may write

σ = si1si2 · · · siN .

We know that there are an even number of terms here. So we may regroup this expression
in pairs,

(4.6) σ = (si1si2)(si3si4) · · · (siN−1
siN ).
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It is thus enough to show that each adjacent pair of s’s is a product of three cycles. So fix
such a pair, say sisj. Let us assume i < j. (We return to the other case in a moment.) We
can write

sisj = si(si+1si+1)(si+2si+2) · · · (sj−1sj−1)sj;

regrouping again, we get

sisj = (sisi+1)(s1+1si+2) · · · (sj−1sj).

By Exercise (3) above, each pair in parenthesis is a 3-cycle; in fact, one sees that

sksk+1 = tk.

So assuming i < j, each sisj is a product of ti’s. If on the other hand i > j, then the same

argument would work, but sisj would be a product of t−1
k ’s. So each pair on the right-side

of (4.6) is a product of ti’s or t−1
i ’s. So σ is too. �

Consider the following three “natural” copies of A7 inside A15: let A
(1)
7 be the alternating

group on {1, 2, . . . , 7}; let A
(2)
7 be the alternating group on {5, 6, . . . , 12}; and finally let A

(3)
7

be the alternating group on {10, 11, . . . , 15}.

Corollary 4.7. Every element of A15 may be written as a product of elements in A
(1)
7 , A

(2)
7 ,

and A
(3)
7 .

Proof. A
(1)
7 contains the elements t±1

1 , . . . , t±1
5 ; A

(2)
7 contains the elements t±1

5 , . . . , t±1
10 ; A

(3)
7

contains the elements t±1
10 , . . . , t±1

13 . So the corollary follow from the theorem. �
We are going to reduce the study of the 15-puzzle to the study of the individual groups

A
(i)
7 .

5. warm-up: the 7-puzzle

Consider the 7-puzzle

1 2 3 4

65 7

Legal moves are just like those for the 15-puzzle.

We need to define a kind of equivalence of configurations. Given an arbitrary placement
of the vacant space, let us agree to migrate it to the lower right-hand corner via the following
snake

We call two configurations that differ by snaking the vacant space this way equivalent. For
instance

5 76

4321

and
5 7

32

1 6

4
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are equivalent, but

5 76

4321

and
5

7432

1 6

are not.

We need a notation for a configuration. So take an arbitrary one, snake the vacant square
to the lower right corner, and assume it looks like

75i 6

4321 ii

ii

ii

We call this configuration [i1 i2 . . . i7], and may view it an as element of S7.

First we notice that we can build the configurations t1 = [2 3 1 4 5 6 7] = (123) and
t2 = [3 1 2 4 5 6 7] = (132). To see this, begin with the initial configuration and cycle the
void clockwise about the 2-by-8 rectangle so as to isolate the tiles 1, 2, and 3 in the first
2-by-2 square:

1 2 3 4

65 7
→

1 2 3 4

5 6 7
→

2 3 4

5 6 71
→

5 6 71

3 42

→
5 61

3 42 7

,

and finally

1

3 42 7

5 6
.

Now shuffle the void counter-clockwise in the first two-by-two square to obtain

4 7

5 62

3 1

.



12

Finally we can shuffle the void around the 2-by-8 rectangle counter-clockwise as follows

4 7

5 62

3 1

→

4 7

2

3 1

65
→

4

2

3 1

65 7
→

2 65 7

43 1

→
65 7

43 12

, ,

ultimately to arrive at

t1 = (1 2 3) =

2 3 1 4

5 76
.

Notice that if we had shuffled the void twice about the 2-by-2 square above (or if we shuffled
once in the opposite direction) we would have achieved the configuration t−1

1 .

It is clear that by modifying our original cycle in the 2-by-8 square, we could have brought
different tiles (other than 123) into the initial square. More precisely, we could have have
234, 347, 476, 567, 156, or 215. Using the same trick, we thus would build the respective
configurations

(5.1) t2, t
−1
2 , (3 4 7), (3 7 4), (4 7 6), (4 6 7), t5, t

−1
5 , (1 5 6), (1 6 5), (2 1 5), (2 5 1).

We want to use Theorem 4.5 (and Exercise (5) of the previous section) to conclude that by
composing these moves we get all 7!/2 = 2520 configurations corresponding to A7. It suffices
to build t±1

3 and t±1
4 as compositions from the list in (5.1). This isn’t so hard to do directly;

for instance,

t3 = (1 6 5)(4 7 6)(3 4 6)(4 6 7)(1 5 6),

but one may alternatively use the following trick. If we relabel “5” by “7”, then t±1
1 together

with the list in (5.1) is exactly t±1
1 , . . . , t±1

5 . So Theorem 4.5 says that using the compositions

of our original list (t±1
1 and the elements of (5.1)), we get what one obtains by taking A7

and switching “5” and “7”. So compositions of our original list gives 7!/2 elements. Since
they are all even, we conclude that, indeed, compositions of our original list gives A7.

Thus in the 7-puzzle we obtain at least the 7!/2 configurations corresponding to A7. But
how do we know that we get no more than these? Perhaps there is a clever kind of move
that we are missing.

To see that we are not missing anything, we must examine four basic moves. They
correspond to taking the original configuration and sliding the void into one of the four
available slots on the bottom row,

5 76

4321
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Next we move the void up,

75 2 6

431

and reshuffle the void, along our chosen snake, back to the lower right hand corner.

5

7

1

62

43

One checks that these four moves are all even permutations. For instance, the above one
gives

[7 1 3 4 5 6 2] = (1 7 2) = (1 7)(7 2).

(Of the remaining three moves, one gives the identity, and one gives the 7-cycle (1234567).
You should check the remaining move!) Since there are no other possible moves (besides the
inverse of these moving the void from the top row to the bottom which are also even), and
since every move is a composite of these basic moves, we concluded that we can only achieve
even configurations. We have already seen that we can achieve them all.

6. The 15-puzzle

Let’s return to our original 15-puzzle. Recall Corollary 4.7. By sliding the vacant tile into
one of the three adjacent pairs of rows and working in those two rows only, the discussion

of the previous section shows that we may achieve the configurations corresponding to A
(1)
7 ,

A
(2)
7 , and A

(3)
7 . By Corollary 4.7, we get all of A15.

Can we get more? We have to consider the same kinds of basic moves of the previous
section. We take a configuration, snake the void to an arbitrary location by a fixed snake,
move the void up or down, and snake the void back along our fixed snake. The key is that
this operation takes place in a pair of rows. We have done the calculation for pairs of rows
already in the previous section, and so we conclude all basic moves are even. Thus only even
configurations can arise, and indeed we get them all.

Finally return to Loyd’s original challenge: swap the 14 and 15 while leaving all other
tiles fixed. But (14 15) is an odd permutation! So this is impossible.


