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1 Introduction

There has always been a close relationship between mathematics and the sciences (astronomy, chemistry,
engineering, physics, etc.). When applying mathematics to study some physical phenomenon, it is often the
case that we arrive at a mathematical model (an equation or set of equations) of the phenomenon that cannot
be conveniently solved with exact formulas. The following classical example from astronomy illustrates this
result:

Example 1.1 Consider a planet in orbit around the sun:

Sun

Planet

perifocus

a

b

x

a

y

Let ω be the frequency of the orbit, t the time since the planet was last closest to the sun (this is called the

perifocus in astronomy), and e =
√

1 − b2

a2 the eccentricity of the planet’s elliptical orbit. Then, according to

Kepler’s laws of planetary motion, the location of the planet at time t is given by

x = a(cosE − e) ;

y = a
√

1 − e2 sin E ,

(1)

where E is called the eccentric anomaly and is given by the equation

E = ωt + e sinE . (2)

We cannot express the solution of this equation in terms of E with an exact formula. This is one of the most
famous examples of a nonlinear equation in all of science.

1



While the mathematician may be interested in studying the form of the equations that arise from some
mathematical model at some abstract level, this is unacceptable to the scientist. Her interest is typically
in how the solution to the equations behaves as the input parameters of the problem change. For example
how does the orbit change as parameters ω and e are changed in the example above. To provide answers to
these questions, it is often necessary to apply some convenient method for extracting numerical values from
the equations. The development and analysis of such methods is called numerical analysis.

Numerical analysis has been around since the Babylonians (300 BC) began predicting the position of the sun
and moon in the sky. However, it has only been considered a mathematical discipline since the advent of the
digital computer. The basic mathematical operations of a computer are the same that we learn very early in
our lives: addition, subtraction, multiplication, and division. The ability to do these operations extremely
fast has caused the field of numerical analysis to blossom in the past half century. Today a modestly priced
personal computer can do about 109 (1,000,000,000) of these basic operations in one second, while the fastest
computers in the world (that we know about) can do about 1012 (1,000,000,000,000) in one second! With
this amazing speed, we can develop numerical methods for providing solutions to mathematical models for
such things as blood clotting, airplane flight, the human genome, and global warming. While we will not be
solving any of these problems, we will learn some basic ideas from numerical analysis by studying a common
problem that arises in applications: nonlinear root finding.

The problem of nonlinear root finding can be stated in an abstract sense as follows:

Given some function f(x), determine the value(s) of x such that f(x) = 0.

The nonlinear root finding problem that you are probably the most familiar with is determining the roots
of a polynomial. For example, what are the roots of the polynomial f(x) = x2 + 4x + 1? This is equivalent
to determining the values of x such that f(x) = 0. We all know that the solution to this problem can
be obtained using the quadratic formula. This is a rare example of a nonlinear problem with a simple
closed-form solution for its roots. If, for example, you were asked to compute the roots of the polynomial
p(x) = x5 +4x4 +x3−5x2 +3x−1, you would not be able to find a method involving a finite number of steps
for determining a closed-form solution. Equation (2) from Example 1.1 can also be stated as a nonlinear
root finding problem for E by rewriting it as follows:

f(E) = ωt − E + e sin(E) = 0 . (3)

Similarly, a closed-form solution for this problem (for aribrary e, t, and ω) cannot be obtained in a finite
number of steps. One issue that we always have to be concerned with for nonlinear root finding problems is
the existence of a solution to the problem. For example, suppose we wish to solve the equation

3

2
+ cosx = 0 .

Since −1 ≤ cosx ≤ 1, for any real value of x, this equation has no real solution. (It has a complex-valued
solution, but for the problems we are interested in, we will only be considering real-valued solutions.)

The central concept to all root finding methods is iteration or successive approximation. The idea is
that we make some guess at the solution, and then we repeatedly improve upon that guess, using some
well-defined operations, until we arrive at an approximate answer that is sufficiently close to actual answer.
We refer to this process as an iterative method. We call the sequence of approximations the iterates and
denote them by x0, x1, x2, . . . , xn, . . .. The following example illustrates the concept of an iterative method:

Example 1.2 Given some value a, make some initial guess x0 and compute x0, x1, x2, . . . , using the iterative
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method

x1 = x0(2 − ax0)

x2 = x1(2 − ax1)

...

xn+1 = xn(2 − axn)

...

Try computing a few iterations of this method for different values for a and x. Can you guess what this
iterative method is converging to? (Hint: this was one of the most important iterative methods for early
computers, and is still used today).

As you can see, iterative methods generally involve an infinite number of steps to obtain the exact solution.
However, the beauty and power of these methods is that typically after a finite, relatively small number of
steps the iteration can be terminated with the last iterate providing a very good approximation to the actual
solution. One of the primary concerns of an iterative method is thus the rate at which it converges to the
actual solution.

Definition 1.3 Let x = α be the actual solution to the nonlinear root finding problem f(x) = 0. A sequence
of iterates is said to converge with order p ≥ 1 to α if

|α − xn| ≈ c|α − xn−1|p as n → ∞, (4)

where c > 0. If p = 1 and c < 1 then the convergence is called linear and we can rewrite (4) as

|α − xn| ≈ cn|α − x0| as n → ∞,

If p > 1 then the convergence is called superlinear. The values p = 2 and p = 3 are given the special names
quadratic and cubic convergence, respectively.

Making an analogy to cars, linear convergence is like a Honda Accord or Toyota Camery; quadratic conver-
gence is like a Ferrari; and cubic convergence is like a rocket ship.

In addition to the order of convergence, the factors for deciding whether an iterative method for solving a
nonlinear root finding problem is good are accuracy, stability, efficiency, and robustness. Each of these can
be defined as follows:

• Accuracy: The error |α − xn| becomes small as n is increased.
• Stability: If the input parameters are changed by small amounts the output of the iterative method

should not be wildly different, unless the underlying problem exhibits this type of behavior. For
example, in the exercise above, we should be able to change x0 by a small ammount and still have the
iterates converge to the same number.

• Efficiency: The number of operations and the time required to obtain an approximate answer should
be minimized.

• Robustness: The iterative method should be applicable to a broad range of inputs.

In the iterative methods that we study we will see how each one of these concepts applies.
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2 Bisection Method

The bisection method is the easiest of all the iterative methods we discuss. The basic idea can explained by
the high/low game you may have played as a child. Someone chooses a number between 1 and 100 and the
challenger tries to guess what it is. The challenger is told whether their guess was too high or too low. It
should be rather obvious that to minimize the number of guesses, the challenger should select their successive
guesses as the midpoint of the shrinking interval that brackets the solution.

In the high/low example, the function we are trying to find a root for is f(x) = x−α, where α is the number
and x are the guesses. Since α is an integer, the method above is guaranteed to converge to the correct
answer in a finite number of steps. To make the problem a little more interesting, we allow an irrational
value of α to be chosen, but the challenger can only guess rational numbers (as is the case for a computer).
Suppose the player selects α =

√
2. To avoid having to know what the numerical value of

√
2 is in order

to determine whether a guess is too high or too low, we simply check if the square of the guess is above or
below 2. Using this strategy we are actually finding the positive root of f(x) = x2 − 2. Since 12 < 2 and
22 > 2, the true solution is bracketed in the interval [1, 2] and we choose as our first guess the midpoint of
this interval, i.e. x0 = 1 1

2 . Since x2
0 > 2, the next choice would be x1 = 1 1

4 . Since x2
1 < 2, the next choice

would be x2 = 1 3
8 . Continuing in this manner we would obtain the iterates

x0 = 1
1

2
, x1 = 1

1

4
, x2 = 1

3

8
, x3 = 1

5

16
, x4 = 1

13

32
, x5 = 1

27

64
.

Suppose we now want to approximate the solution to f(x) = 0 for a general continuous function f(x). As
we have seen, the key to the bisection method is to keep the actual solution bracketed between the guesses.
Thus, in addition to being given f(x), we need an interval a ≤ x ≤ b where f(a) and f(b) differ in sign.
We can write this requirement mathematically as f(a)f(b) < 0. It seems reasonable to conclude that since
f(x) is continuous and has different signs at each end of the interval [a, b], there must be at least one point
α ∈ [a, b], such that f(α) = 0. Thus, f(x) has at least one root in the interval. This result is in fact known
as the Intermediate Value Theorem.

Now that we have an idea for how the bisection method works for a general problem f(x) = 0, it is time to
write down a formal procedure for it using well defined operations. We call such a procedure an algorithm.
We can think of an algorithm as a receipe for solving some mathematical problem. However, instead of the
basic ingredients of flour, sugar, eggs, and salt, the fundamental building blocks of an algorithm are the
basic mathematical operations of addition, subtraction, multiplication, and division, as well as the for, if,
and while constructs.

The bisection algorithm is given by Algorithm 1. The line while b − a > 2ε in this algorithm is called
the stopping criterion, and we call ε the error tolerance. This line says that we are going to continue
bisecting the interval until the length of the interval is ≤ 2ε. This guarantees that the value returned by
the algorithm is at most a distance ε away from the actual solution. The value for ε is given as an input to
the algorithm. Note that the smaller the value of ε, the longer it takes the bisection method to converge.
Typically, we choose this value to be something small like ε = 10−6. The stopping criterion that we have
chosen is called an absolute criterion. Some other types of criterion are relative and residual. These
correspond to b − a < 2ε|xn| and |f(xn) ≤ ε|, respectively. There is no correct choice.

Let α be the solution to f(x) = 0 contained in the interval [a, b]. Since we are reducing the interval containing
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Algorithm 1 Bisection Method

Input: Continuous function f(x).
Interval [a, b], such that f(a)f(b) < 0.
Error tolerance ε.

Output: Approximate solution that is within ε of a root of f(x).

n = −1 {initialize the counter}
while b − a > 2ε do

xn+1 = a+b
2 {bisect the interval}

if f(xn+1) = 0 then

return xn+1 {we have found a solution, return it}
end if

if f(xn+1)f(a) < 0 then

b = xn+1 {the guess is between a and xn+1; shrink the interval from the right}
else

a = xn+1 {the guess is between xn+1 and b; shrink the interval from the left}
end if

n = n + 1 {update the counter}
end while

xn+1 = b+a
2 {bisect the interval one last time}

return xn+1 {return the solution}

α by 1
2 on each iteration, we have the bound

|α − x0| ≤ b − a

2

|α − x1| ≤ b − a

22

|α − x1| ≤ b − a

23

...

|α − xn| ≤ b − a

2n
(5)

(6)

Thus, the bisection method converges linearly to the solution at a rate of 1
2 . Note that this bound is

entirely independent of the function f(x). Equation (5) also provides a convenient bound on the total number
of iterations necessary to ensure |α − xn| ≤ ε. This will be satisfied when

1

2n
(b − a) ≤ ε .

Solving this equation for n gives the bound

n ≥ log2

(

b − a

ε

)

. (7)

The table below shows the numerical value and error of the first 10 iterates of the bisection algorithm for
approximating

√
2 using the function f(x) = x2 − 2, the interval [1, 2], and ε = 10−3.
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n xn b − a |
√

2 − xn|
0 1.5000000000 · 100 1.0000000000 · 100 8.5786437627 · 10−2

1 1.2500000000 · 100 5.0000000000 · 10−1 1.6421356237 · 10−1

2 1.3750000000 · 100 2.5000000000 · 10−1 3.9213562373 · 10−2

3 1.4375000000 · 100 1.2500000000 · 10−1 2.3286437627 · 10−2

4 1.4062500000 · 100 6.2500000000 · 10−2 7.9635623731 · 10−3

5 1.4218750000 · 100 3.1250000000 · 10−2 7.6614376269 · 10−3

6 1.4140625000 · 100 1.5625000000 · 10−2 1.5106237310 · 10−4

7 1.4179687500 · 100 7.8125000000 · 10−3 3.7551876269 · 10−3

8 1.4160156250 · 100 3.9062500000 · 10−3 1.8020626269 · 10−3

9 1.4150390625 · 100 1.9531250000 · 10−3 8.2550012690 · 10−4

The column b − a corresponds to the length of the increasingly shrinking interval around the root.

The most difficult part about using the bisection method is finding an interval [a, b] where the continuous
function f(x) changes sign. Once this is found, the algorithm is guranteed to converge. Thus, we would say
that the bisection method is very robust. Also, as long as f(x) has only one root between the interval [a, b],
and it does not have another root very close to a or b, we can make small changes to a or b and the method
will converge to the same solution. Thus, we would say the bisection method is stable. Additionally, (5) tells
us that the error |α− xn| can be made as small as we like by increasing n. Thus, we would say the bisection
method is accurate. Finally, the method converges linearly which is acceptable, but, as we will see in the
next two sections, it is by no means the best we can do. Thus, we would say that the bisection method is
not very efficient.

Exercises

1. Estimate the minimum number of iterations necessary to guarantee the approximation to
√

2 using the
bisection method is within ε of the actual value for

(a) ε = 10−3, [a, b] = [1, 2],

(b) ε = 10−3, [a, b] = [0, 2],

(c) ε = 10−3, [a, b] = [0, 4],

(d) ε = 10−6, [a, b] = [1, 2], and

(e) ε = 10−12, [a, b] = [1, 2].

From these results, how does the number of iterations increase as we (1) double the length of the
interval containing the root? (2) double the exponent in the error tolerance ε?

2. Use the bisection method with an error tolerance of ε = 10−3 to find the roots of the following equations.
You may use the graph of the functions to determine a rough approximation for the interval.

(a) The real root of x3 − x2 − x − 1 = 0.

(b) The root of x = 1 + 0.3 cosx.

(c) The smallest positive root of e−x = sinx.

(d) All real roots of x4 − x − 1 = 0.

3. In this problem you will use the bisection method to compute the eccentric anomaly E in equation
(2) for the earth to within an absolute error of 10−3 and then use this value to compute the x and
y coordinates of the earth. The approximate input parameters for the earth are e = 0.0167, ω =

2π
365.25635 days , and a = 149.6 · 106 km. Compute E,x, and y for the following values of t:
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(a) t = 91 days,

(b) t = 182 days, and

(b) t = 273 days

To pick an appropriate interval for the bisection, you may consider plotting the function f(E) in (3)
and then graphically determining where it crosses the E-axis.

4. Suppose you want to use your calculator to compute 1/α for some α > 0, but that your calculator only
has an add, subtract, and multiply button. Since the root of f(x) = 1 − αx is 1/α, we can use these
three operations to approximate 1/α by using the bisection method on this function.

(a) Give a method for calculating an interval [a, b] that contains 1/α, but does not involve any division.

(b) Suppose 1 ≤ α ≤ 2. Determine the number of iterations necessary to guarantee the absolute error
in the approximation to 1/α is < 10−15.

(c) With your strategy for choosing the interval from part (a), compute 1/α with the bisection method
for

(i) α = 7/13,

(ii) α = 11/81, and

(iii) α = 13/797 ,

using an error tolerance of 10−4. Use these approximate results as the initial guess to the iterative
method in Example 1.2 to compute 1/α to within an error of 10−15, thus giving a reliable and
fast method for computing 1/α.

5. The way that the bisection method is presented in Algorithm 1, each iteration requires three evaluations
of f(x). If f(x) is some complicated function that requires a significant amount of time to compute
then these function evaluations could significantly slow down the bisection method. How can we rewrite
the algorithm so that only one function value is used at each iteration?

3 Secant method

To derive the secant method we use a geometrical approach. Suppose that we are trying to find a root of
the function f(x) given in Figure 1 (the root is where f(x) crosses the x-axis) and supose that we make two
initial guesses x0 and x1 that are reasonably close to the true root of f(x). To improve upon these guesses,
we find the line L1 that passes through these points and choose as our next guess the point x2 where this
line passes through x-axis. To improve upon this guess, we find the line L2 that passes through the points x1

and x2. Our next guess becomes the point x3 where this line passes through x-axis. We repeat this process
of finding where the line that passes through the previous two guesses xn and xn−1 intersects the x-axis to
produce the next guesss xn+1. Like the bisection method, this process is terminated when we reach some
stopping criterion. We call this method the secant method because a line that passes through two points
of a curve is called a secant.

To make the secant method useful, we need an algebraic formula that tells us how to generate the iterate
xn+1 from the previous two iterates xn and xn−1. The line that passes through the previous two iterates is
given in point-slope form as

y(x) − f(xn) =
f(xn) − f(xn−1)

xn − xn−1
(x − xn) .
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x0 x1 x2 x3

L1

L2

L1

f(x)

Figure 1: Geometrical illustration of the secant method.

The new iterate xn+1 is given by the location where this line passes through the x-axis. Setting y(x) = 0
and solving for x = xn+1 in the above equation gives

xn+1 = xn − xn − xn−1

f(xn) − f(xn−1)
f(xn) , n = 1, 2, . . . . (8)

Now that we know how to generate the sequence of iterates, we are ready to write down an algorithm for
the secant method. This algorithm is given in Algorithm 2. The stopping criterion in this algorithm is

Algorithm 2 Secant method

Input: Continuous function f(x).
Two initial guesses x0 and x1 for the root.
Error tolerance ε.

Output: Approximate solution x∗ .

n = 1 {initialize the counter}
while |xn − xn−1| > ε do

xn+1 = xn − xn−xn−1

f(xn)−f(xn−1)
f(xn) {generate the next iterate}

if f(xn+1) = 0 then

x∗ = xn+1 {we have found a solution}
return x∗ {return it}

end if

n = n + 1 {update the counter}
end while

x∗ = xn

return x∗ {return the solution}

similar to that of the bisection algorithm. However, the bisection method is guaranteed to converge since
the true solution always remains bracketed between a shrinking interval. The secant method has no such
guarantee. In Exercise 3 we give an example where the method fails. Fortunately, we can typically detect
this convergence failure by monitoring the difference between the successive iterates xn and xn−1. If the
difference is not decreasing after several iterations, or even worse if it is increasing, then we know the method
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is failing and we can attempt to restart it with some better initial guesses. Another approach is to use the
bisection method until we are reasonably close to the solution and then switch to the secant method.

While we may have loss the guarantee on convergence of the secant method, we have gained an increase in
the rate at which the iterates converge (when the secant method does converge.) To illustrate this increased
rate, we again consider approximating

√
2 by finding a root of the function f(x) = x2 − 2. The following

table lists the numerical results with the initial guess x0 = 1 and x1 = 2 and the tolerance ε = 10−6:

n xn |xn − xn−1| |
√

2 − xn|
0 1.0000000000 −−−−−− 4.1421356237 · 10−1

1 2.0000000000 1.0000000000 · 100 5.8578643763 · 10−1

2 1.3333333333 6.6666666667 · 10−1 8.0880229040 · 10−2

3 1.4000000000 6.6666666667 · 10−2 1.4213562373 · 10−2

4 1.4146341463 1.4634146341 · 10−2 4.2058396837 · 10−4

5 1.4142114385 4.2270786659 · 10−4 2.1238982251 · 10−6

6 1.4142135621 2.1235824503 · 10−6 3.1577473969 · 10−10

7 1.4142135624 3.1577496173 · 10−10 2.2204460493 · 10−16

With these two initial guesses, the secant method only requires six iterations to converge to the
√

2 to the
maximum precision that a standard computer or calculator possessess. Compare these result to those of
the bisection method, which after 6 iterations produces an approximation with an error of 7.66 · 10−3. In
general, if α is a solution to f(x) = 0 and if the secant method converges to α for the initial guesses x0 and
x1 then it can be shown that

|α − xn| ≈ c|α − xn−1|
1+

√

5

2 , as n → ∞ , (9)

for some c > 0. The proof of this result is beyond the scope of this lesson; it involves some results from

calculus and the theory of linear difference equations. You may recognize the power p = 1+
√

5
2 ≈ 1.618 as

the golden ratio. Once we are close to the actual solution α this convergence result tells us that the correct
number of digits in xn is roughly multiplied by 1.618 with each iteration. Unlike the bisection method, we
cannot bound the maximum number of iterations it will take for the secant method to converge to within
the given tolerance for a general function f(x).

Like the bisection method, the most difficult part of the secant method is determining two good intial starting
guesses for the root of the continuous function f(x). If these are made sufficiently close to the actual answer
then we are guaranteed the secant method will converge. However, since the method is not guaranteed to
converge for any intial starting guesses, we would say that the secant method is only mildly robust. Also,
provided the initial guesses are sufficiently close to a root α, and there are not any other roots very close
to α then we can make small changes to the initial guesses and the method will still converge to the same
root. Thus, we would say the secant method is stable. Provided that the secant method converges, (9) tells
us that the error can be made as small as we like by increasing n and that the rate is superlinear. Thus,
we would say that the secant method is accurate and fairly efficient.

Exercises

1. Repeat exercise 2 from the previous section, but use an error tolerance of 10−8. You might consider
using two successive approximations from the bisection method as initial guesses to the secant method.

2. Repeat Excercise 3 from the previous section, but use an error tolerance of 10−8.

3. Illustrate how the secant method would proceed for the three functions in the plots on page 12 by
drawing the secant lines and successive iterates on the graph. Use the indicated points as the starting
guesses. For which function will the secant method fail to converge to indicated root?
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4. You are contracted by a power company to solve a problem related to a suspended power cable (at
points of equal height) from two towers 100 yards apart. The power company requires that the cable
“dip” down 10 yards at the midpoint and they have asked you to determine what the length of the
cable should be. After doing some research, you find that the curve describing a suspended cable is
known as a catenary and is given by the equation

f(x) =
c

2

(

e(x−a)/c + e−(x−a)/c
)

,

where c is a parameter that determines how quickly the catenary “opens up”, and a is the location of
the “dip”. You also find that the length of a catenary is given by the equation

s(x) =
c

2

(

e(x−a)/c − e−(x−a)/c
)

,

Given that the dip in the cable is 10 yards at the midpoint, use f(x) to determine the nonlinear
equation for computing c. Solve this nonlinear equation using the secant method and then use the
solution to approximate the required length of the power cable. Finally, send your rather large bill to
the power company!

5. Suppose you and your family are on a house boat trip to Lake Powell. Before you leave the dock one
of the mechanics tells you that the engines on your house boat will unfortunately stop working exactly
when the gas tank is 3/8 full or less. After some arguing about getting another house boat, you decide
to stick with this boat and to ensure that the tanks never get below 3/8 full. Once out on the lake,
you realize the gas gauge is not working so you cannot tell how much gas is in the tank. You call the
mechanic on your cell phone and she tells you to simply check the level of gas manually by using a
dip stick. After locating the gas tank and a dipstick, you realize there is another problem: The gas
tank is perfectly cylindrical (with a diameter of 3 feet), thus when you measure the amount of gas the
length of the gas mark on the dipstick does not directly correspond to the amount of gas in the tank.
For example, if the length of the mark is 3 · 3

8 , this does not mean the tank is 3/8 full. Remembering
that you brought your calculator with you on your trip, determine the length of the gas mark on the
dipstick that corresponds to the tank being 3/8 full. The following picture may help you get started:

Dip Stick

d = 3

h

r = 1.5

Gas

6. Let hn = xn−1 − xn in the secant method. Then we can rewrite the secant iteration (8) as

xn+1 = xn − f(xn)
(

f(xn+h)−f(xn)
hn

) , n = 1, 2, . . . .
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Now consider what happens as we take the limit as hn → 0, (i.e. as xn and xn−1 one another). For
this case, we write the denominator in the above equation as

lim
hn→0

f(xn + h) − f(xn)

hn
.

This quantity is called the derivative of f(x) at xn and is given the name f ′(xn). Thus, in the limit as
h → 0, the secant method is given by

xn+1 = xn − f(xn)

f ′(xn)
, n = 1, 2, . . . . (10)

This is know as Newton’s method and is the most widely used root finding method. Use this method
for solving the problems from Exercise 1 of the previous section.

7. As the secant method is presented in Algorithm 2, it is not very efficient. The main problem is that
it involves four evaluations of f(x) for each iteration which could be very time intensive. Rewrite the
function so that f(x) is only evaluated once per iteration. Note that this will involve introducing two
new variables to temporarily store the previous evaluations of f(x).
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xx0 x1

x0 x1

x
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x0 x1
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x
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4 Fixed point iteration

We turn our attention now towards a method for determining a fixed point of a function. This problem can
be stated in an abstract sense as follows:

Given some function g(x), determine the value(s) of x such that x = g(x).

The fixed point problem is mathematically equivalent to the nonlinear root finding problem. To see this, let
f(x) = c(g(x) − x) for c 6= 0, then finding the values where f(x) = 0 is the same as finding a fixed point of
g(x). Conversely, let g(x) = cf(x) + x, then finding the values where x = g(x) is the same as finding a root
of f(x). It is often possible to also exploit the form of f(x) in the nonlinear root finding problem to make
it a fixed point problem as the following example illustrates.

Example 4.1 Consider the nonlinear root finding problem

f(x) = x2 − a = 0 (a > 0) .

The following are four examples for converting this to a fixed point problem:

(a) x = x − a + x2

(b) x =
a

x

(c) x = x + 1 − 1

a
x2

(d) x =
1

2

(

x +
a

x

)

The solution to each of these problems is x = ±√
α.

The simplest technique for solving the fixed point problem is to make some initial guess x0 to the solution
and then refine that guess by repeatedly plugging it back into the function g(x). This gives the following
sequence of iterates

x1 = g(x0)

x2 = g(x1)

...

xn+1 = g(xn)

...

We fittingly call this technique the fixed point iteration method. The following exercise illustrates how
to apply this technique and how the results of the iteration depend on the formulation of the fixed point
problem.

Exercise 4.2 Convert the fixed point problems (a)-(d) in Example 4.1 to fixed point iterations. For the
initial guess x0 = 3, write down the first 5 iterations for each of these problems with a = 2.

From this exercise, we clearly see that the convergence of the fixed point iteration method depends on the
form of fixed point problem.
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Graphically, the solution to the fixed point problem x = g(x) is given by the points where the function
y = g(x) intersects the line y = x. The fixed point iteration method can also be described graphically as
follows:

1. Plot the line y = x and y = g(x).

2. Make an initial guess x0.

3. Draw a vertical line from the point (x0, 0) to the point (x0, g(x0).

4. Draw a horizontal line from the point (x0, g(x0)) until it intersects the line y = x. The point
of intersection is the next iterate x1.

5. Repeat steps 3 and 4 with the new iterate.

Figure 2 illustrates this graphical procedure for finding the fixed point α of a function g(x). We can clearly

x0 x1 x2 x3 x4

y = g (x)

y = x
y

xα

Figure 2: Graphical illustration of the fixed point iteration method.

see from the figure that the iterates are converging to α.

Exercises

1. Convert the following nonlinear root finding problems to fixed point problems x = g(x).

(a) x3 − x2 − x − 1 = 0; −∞ < x < ∞
(b) x3 − 2x − 5 = 0; −∞ < x < ∞
(c) x3 − a = 0; −∞ < x < ∞ (a > 0)

(d) x − 91(2π/365.25635)− 0.0167 sinx = 0; −∞ < x < ∞ (Kepler’s problem (3) for the earth)

(e) x + lnx = 0; 0 < x < ∞
(f) ex − sin2(x) − 2 = 0; −∞ < x < ∞
(g) x cosx − lnx2 = 0; 0 < x < 2

2. Each of the problems (a)–(g) in the previous exercise have one real solution in the interval specified.
Write a fixed point iteration method for each problem and use it to find an approximate solution.
Verify each answer by plugging it back into the original equation.
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3. Use the graphical fixed point iteration method on each of the plots on pages 15–16 to determine if the
method converges to the fixed point α. Use several different starting guesses for each plot.

4. The saying “a picture says a thousand words” is also very applicable to mathematics. Using the results
from the previous exercise and those from Figure 2, try to determine mathematical conditions necessary
to guarantee the fixed point iteration method will converge to a fixed point α.

y =x

y = g ( x)

y

x
α

 

 

y

x

y =x

y = g ( x)

α
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y

x

y =x

y = g ( x)

α

x

y

α

y = x

y = g(x)
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