
Infinity and Counting1Peter TrapaSeptember 28, 2005There are 10 kinds of people in the world:those who understand binary, and those who don't.
Welcome to the �rst installment of the 2005 Utah Math Circle. Since we have a largegroup today (and a correspondingly wide array of mathematical backgrounds), we are goingto recycle some notes we used last year. For veterans of the Math Circle, you can take thisopportunity to refresh your memory; for those veterans who need no refreshing, feel free to
ip to the more advanced problems I've added at the end. They are based on the same kindsof ideas as the earlier problems, but you may �nd them more challenging.Today we will study in�nity. Everyone has an intuitive idea of what in�nity is: it'ssomething that goes on and on forever. But it's often necessary to make a more precisede�nition. That is the one of the main goals of these notes.By way of motivation, consider the famous in�nite hotel. It has rooms numbered 1, 2,3, and so on; but there is no largest room number. Even when all the rooms are occupied,the proprietor still displays the \Vacancy" sign. The reason? If a new guest arrives, theproprietor simply tells all the current occupants to move to the next higher room number.More precisely the proprietor tells the occupant of room n to move to room n + 1. Afterthis is done for all n, each existing guest has his own room, and room number 1 is vacantfor the new guest to occupy.This trick could never work with a �nite hotel | when all the room are �lled, there is noway to accommodate a new guest (without putting two guests in the same room). We aregoing to de�ne the notion of in�nity so that the converse also holds: this trick will alwayswork with an in�nite hotel. First we need a few preliminary de�nitions.De�nition Suppose S and T are sets and that f : S ! T is a function. We say that f isone-to-one if f never sends two points of S to the same point in T ; that is,f is one-to-one if whenever f(a) = f(b), then a = b.We say that f is onto if every point of T is hit by f ; that isf is onto if for all t 2 T , there exists s 2 S such that f(s) = t.If f : S ! T is one-to-one and onto, we say that f puts S and T in one-to-one correspondence.A function which is one-to-one is sometimes called injective; one that is onto is often calledsurjective; and one that is one-to-one and onto is called bijective. This is simply a matter ofterminology.
1A good reference for this material is the book The Art of Problem Solving, Volume 2, by R. Rusczykand S. Lehoczyk available at www.artofproblemsolving.com. In particular, I took many of the foregoingexercises from this book. 1



2Exercises 1. The following represent graphs of functions from the real numbers R to R.Decide which are one-to-one, which are onto, which are neither, and which are both.

2. Write N for the set of natural numbers f1; 2; 3; : : : g. Consider the function f : N ! Nde�ned by f(n) = n+ 1. Is f onto? Is f one-to-one?3. Write Z for the set of integers f: : : ;�2;�1; 0; 1; 2; : : : g. Consider the function f : Z ! Zde�ned by f(n) = n+ 1. Is f onto? Is f one-to-one?4. Consider the function f : N ! N de�ned by f(n) = n2. Is f onto? Is f one-to-one?5. Consider the function f : Z ! Z de�ned by f(n) = n2. Is f onto? Is f one-to-one?6. Find a one-to-one onto mapf0; 1; 2; 3; : : : g �! f1; 2; 3; : : : g7. Find a one-to-one onto map from the real numbers x such that x � 0 to the set of realnumber x such that x > 0.8. Find a one-to-one onto map from the real numbers x such that 0 � x � 1 to the set ofreal number x such that 0 < x < 1.



3Let's return to the notion of in�nity. We can now make a precise de�nition.De�nition. A set S is called in�nite if there is a map f : S ! S such that f is one-to-onebut not onto. Here is another way to say the same thing. A set S is called in�nite if andonly if it there is a subset T � S with T 6= S and a one-to-one map f : S ! T .This de�nition captures our intuitive notion of what it means to be in�nite. For examplelook as the set of rooms in the in�nite hotel S = f1; 2; 3; : : : g. De�ne a map f : S ! Sby f(j) = j + 1. (This is the map that the proprietor used.) This is clearly one-to-one: iff(j) = j(k), then j + 1 = k + 1 and j = k. But it's not onto since there is no j such thatf(j) = 1. So the set of rooms in the in�nite hotel is indeed in�nite!The next issue we want to address is the notion of the \size" of a set. First suppose Sand T are �nite sets. Then S and T have the same number of elements if and only if there isa one-to-one and onto map between them. (Stop and make sure that you really understandthis assertion.) So, in the case of �nite sets, we say that S and T have the same size ifand only if there is a bijection between S and T . Now we may simply extend the de�nitionto arbitrary sets: two sets S and T have the same size if there is a one-to-one onto mapbetween them. (As a matter of terminology the technical word that is often used for \size"is \cardinality." For example, we say that two sets have the same cardinality if there is abijection between them.)It may surprise you that there are di�erent sizes of in�nite sets. It's convenient to intro-duce a little more terminology at this point. Recall that we write N for the set f1; 2 : : : g.We say that a set S is countable if there exists an onto map f : N ! S. For example, if Sis �nite, we can simply label its elements fs1; s2; : : : ; sNg and then the function f can bede�ned as f(j) = (sj if 1 � j � Ns1 otherwise:So �nite sets are countable. Of course N is countable too. To test your understanding, it'sa good exercise to verify that Z is also countable.Are there other in�nite sets that are uncountable? Here is a beautiful trick (called Cantor'sdiagonal argument) to show that the set R of real numbers is uncountable. In fact we willshow that the interval of real numbers between 0 and 1 is uncountable. Suppose f is anymap from Z to [0; 1]. Our task is to show that f cannot be onto. Then we will have proved[0; 1] (and hence R) is uncountable. Consider the value f(1). This is a real number, so wecan express it in decimal notation and writef(1) = :x(1)1 x(1)2 x(1)3 � � � ;



4here each x(i)j is just a number between 0 and 9. Let's list the other values of f in this wayf(1) = :x(1)1 x(1)2 x(1)3 x(1)4 x(1)5 � � �f(2) = :x(2)1 x(2)2 x(2)3 x(2)4 x(2)5 � � �f(3) = :x(3)1 x(3)2 x(3)3 x(3)4 x(3)5 � � �f(4) = :x(4)1 x(4)2 x(4)3 x(4)4 x(4)5 � � �f(5) = :x(5)1 x(5)2 x(5)3 x(5)4 x(5)5 � � �...Now choose numbers yj from 0 to 9 so that each yj di�ers from the diagonal element x(j)J ,yj 6= x(j)j for all j:Consider y = :y1y2y3y4y5 � � � :Clearly y 2 [0; 1]. But by construction there is no integer k such that f(k) = y. So f cannotbe onto. So [0; 1] is uncountable! Thus the interval [0; 1] does not have the same size as Z!Here are some problems to test your understanding of countability.Exercises1. Is the set of pairs of integers countable?2. Is the set of rational numbers Q (i.e. fractions) countable?3. Is the set of irrational numbers countable?4. Consider the set S consisting of �nite strings of integers. For instance, a typical elementof this set might look like (125;�98726; 0; 0; 6; 100023);but the in�nite string (1; 2; 3; 4; 5; 6; 7; : : : )is not in S (since it is not a �nite string). Is S countable?5. Repeat Exercise (4), but this time let S contain all strings (�nite or in�nite).Aside. One of the great problems of the last hundred years is called the continuum hypoth-esis. It can be stated as follows.Conjecture. Any set of real numbers is either countable or can be put in one-to-one corre-spondence with the entire set of real numbers.



5Advanced exercises, part 11. Does the interval (�1; 1) have the same size as the entire real line? That is, does thereexist a one-to-one onto map from (�1; 1) to the entire real line? To answer this, you musteither exhibit such a map, or prove that no such map exists.2. Does the set of points lying in a square of edge-length one have the same size as theinterval [0; 1]? (As before, you must either exhibit a one-to-one onto map between theinterval and the square, or prove that no such map exists.) What about the cube? Is therea relationship between this exercise and Exercises (4) and (5) on the previous page?3. This exercise introduces the famous Cantor set. We start with the interval of real numbersfrom 0 to 1 and remove the middle interval from 1=3 to 2=3,S1 =Then perform the same procedure to each of the remaining intervals to arriveS2 =Continue in this way,S3 =S4 =S5 =Finally de�ne S =\i Si:This is called the Cantor set. It looks like a little dust on the real line. In particular ifa and b are in S, then the line segment between a and b does not belong to S. (Make sureyou understand this.) Is S countable?4. Instead of using thirds, use fourths (or �fths or sixths, etc.) to build your own version ofthe Cantor set. Is it countable?



6Advanced topics, part 2Even though counting in�nite sets may seem more exciting and interesting, there is a lotthat can be learned by sticking to �nite sets too. One theme that arises over and over againis that often there are two inequivalent ways to count the same �nite set. Those di�erentways of counting can sometimes interact in very interesting ways.By way of motivation, we begin with a classic contest problem: How many solutions tothe equation(1) x1 + x2 + � � � + x5 = 500are there for nonnegative integers x1; x2; : : : ; x5?For instance, one solution is x1 = 1, x2 = 1, x3 = x4 = 0 and x5 = 498. Clearly there aremany more and it really is impractical to enumerate all of them haphazardly. To get a feelfor the problem, consider an easier one: how many solutions are there toz1 + z2 + z3 = 5are there in nonnegative integers z1, z2, and z3. This time it might really be feasible toenumerate all of them, beginning (say) with1 + 1 + 3 = 52 + 0 + 3 = 54 + 1 + 0 = 5and so on. With a little elbow grease, we �nd the answer is 21. Here is more sophisticatedapproach. Each solution corresponds to a way to partition 5 objects into 3 parts. The �rstsolution partitions 5 into parts of size 1, 1, and 3. Think of the objects as 5 stars and thepartitions as bars; the number of stars between the bars corresponds to the number of partsof the partition. For example, the partitions corresponding to the three solutions above are? j ? j ? ? ?? ? j j ? ? ?? ? ? ? j ? jNow we can generalize to a more precise statement: there is a one-to-one onto map fromthe set of solutions to the set of linear con�gurations of seven symbols, �ve of which are starsand two of which are bars. But the set of con�gurations is easy to count: we have sevenchoices of where to put the �rst bar, and six for the remaining bar. This give 7 � 6 = 42.But it is clear that we are overcounting by a factor of two: choosing the �rst bar in theith spot and the second bar in the jth spot gives the same con�guration as choosing the�rst bar in the jth spot and the second bar in the ith spot. So our count for the numberof con�gurations, and hence for the number of solutions to z1 + z2 + z3 = 5 in nonnegativeintegers, is 7 � 62 = 21;as the brute-force method would have given.Now let's return to (1). This time there are 500 stars and four bars, and so each con�gu-ration consists of 504 objects, four of which are distinguished as bars. The analogous count



7then is 504 � 503 � 502 � 5014 � 3 � 2 = 2656615626:(Make sure you understand the denominator.) Pretty clever, huh?To test your understanding, try the following exercises all in the same mold.Exercises.1. A dog trainer wants to buy 18 dogs all of which are either cocker spaniels, Irish Setters,or Russian Wolfhounds. How many choices does she have?2. A businessman is buying a new wardrobe. He wants to purchase 14 identical new shirtsin shades of blue, beige, and white. How many possible choices does he have?3. In how many ways can 3 Americans, 4 Germans, 2 Frechman, and 3 Russians sit arounda circular table if those from the same country sit together?Now we turn to an ostensibly much harder problem: how many nonnegative integersolutions are there to the inequalityx1 + x2 + x3 + x4 � 500?Devising a scheme to enumerate the possible solutions is even more daunting than if theproblem was for an equality instead (as above). We need a new idea.Let S denote the set of nonnegative solutions to the inequality. Now let T denote the setof nonnegative integer solutions to the equalityy1 + y2 + y3 + y4 + y5 = 500:The �rst key step is to notice that there is a one-to-one correspondence between S and T .It takes the solution (x1; x2; x3; x4) in S to the solution(x1; x2; x3; x4; 500 � (x1 + x2 + x3; x4))But now we can reason by stars and bars (as above) to conclude that the number of elementsin T (and hence S) is simply504 � 503 � 502 � 5014 � 3 � 2 = 2656615626:There are other ways to count the elements of S, but using T is a particularly elegant wayto do so.Here are a few more exercises along these lines.Exercises.1. How many solutions solutions are there to x1 + x2 + x3 � 55 for strictly positive integersx1; x2; and x3.2. How many ways are there to seat �ve people in a row of 20 chairs so that no two peoplesit next to each other?3. When (a+ b+ c+ d)10 is expanded and like terms are combined, how many terms are inthe result?


