INFINITY AND INDUCTION

Peter Trapa October 14, 2003

Everyone knows what infinity is: it's something that goes on and on forever. But it's often necessary to make a more precise definition. That is the first goal of these notes.

By way of motivation, consider the famous infinite hotel. It has rooms numbered 1, 2, 3, and so on; but there is no largest room number. Even when all the rooms are occupied, the proprietor still displays the "Vacancy" sign. The reason? If a new guest arrives, the proprietor simply tells all the current occupants to move to the next higher room number. More precisely the proprietor tells the occupant of room n to move to room n + 1. After this is done for all n, each existing guest has his own room, and room number 1 is vacant for the new guest to occupy.

This trick could never work with a finite hotel — when all the room are filled, there is no way to accommodate a new guest (without putting two guests in the same room). We are going to define the notion of infinity so that the converse also holds: this trick will *always* work with an infinite hotel. First we need a few preliminary definitions.

Definition Suppose S and T are sets and that $f: S \to T$ is a function. We say that f is one-to-one if f never sends two points of S to the same point in T; that is,

f is one-to-one if whenever
$$f(a) = f(b)$$
, then $a = b$.

We say that f is onto if every point of T is hit by f; that is

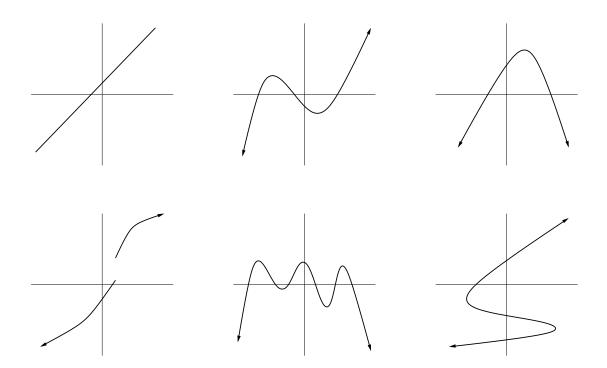
f is onto if for all $t \in T$, there exists $s \in S$ such that f(s) = t.

If $f: S \to T$ is one-to-one and onto, we say that f puts S and T in one-to-one correspondence. A function which is one-to-one is sometimes called *injective*; one that is onto is often called *surjective*; and one that is one-to-one and onto is called *bijective*. This is simply a matter of terminology.

Exercises

- 1. Write \mathbb{N} for the set of natural numbers $\{1,2,3,\dots\}$. Consider the function $f:\mathbb{N}\to\mathbb{N}$ defined by f(n)=n+1. Is f onto? Is f one-to-one?
- 2. Write \mathbb{Z} for the set of integers $\{\ldots, -2, -1, 0, 1, 2, \ldots\}$. Consider the function $f: \mathbb{Z} \to \mathbb{Z}$ defined by f(n) = n + 1. Is f onto? Is f one-to-one?
- 3. Consider the function $f: \mathbb{N} \to \mathbb{N}$ defined by $f(n) = n^2$. Is f onto? Is f one-to-one?
- 4. Consider the function $f: \mathbb{Z} \to \mathbb{Z}$ defined by $f(n) = n^2$. Is f onto? Is f one-to-one?

5. The following represent graphs of functions from the real numbers \mathbb{R} to \mathbb{R} . Decide which are one-to-one, which are onto, which are neither, and which are both.



6. Find a one-to-one onto map

$$\{0,1,2,3,\dots\} \longrightarrow \{1,2,3,\dots\}$$

- 7. Find a one-to-one onto map from the real numbers x such that $x \ge 0$ to the set of real number x such that x > 0.
- 8. Find a one-to-one onto map from the real numbers x such that $0 \le x \le 1$ to the set of real number x such that 0 < x < 1.

Let's return to the notion of infinity. We can now make a precise definition.

Definition. A set S is called *infinite* if there is a map $f: S \to S$ such that f is one-to-one but *not* onto. Here is another way to say the same thing. A set S is called infinite if and only if it there is a subset $T \subset S$ with $T \neq S$ and a one-to-one map $f: S \to T$.

This definition captures our intuitive notion of what it means to be infinite. For example look as the set of rooms in the infinite hotel $S = \{1, 2, 3, ...\}$. Define a map $f: S \to S$ by f(j) = j + 1. (This is the map that the proprietor used.) This is clearly one-to-one: if

f(j) = j(k), then j + 1 = k + 1 and j = k. But it's not onto since there is no j such that f(j) = 1. So the set of rooms in the infinite hotel is indeed infinite!

It may surprise you that there are different "sizes" of infinite. Let's write \mathbb{Z} for the set $\{\ldots, -2, -1, 0, 1, 2 \ldots\}$. We say that a set S is *countable* if there exists an onto map $f: \mathbb{N} \to S$. For example, if S is finite, we can simply label its elements $\{s_1, s_2, \ldots, s_N\}$ and then the function f can be defined as

$$f(j) = \begin{cases} s_j & \text{if } 1 \le j \le N \\ s_1 & \text{otherwise.} \end{cases}$$

So finite sets are countable. Of course \mathbb{N} is countable too. to test your understanding, it's a good exercise to verify that \mathbb{Z} is also countable.

Are there other infinite sets that are uncountable? Here is a beautiful trick (called Cantor's diagonal argument) to show that the set \mathbb{R} of real numbers is uncountable. In fact we will show that the interval of real numbers between 0 and 1 is uncountable. Suppose f is any map from \mathbb{Z} to [0,1]. Our task is to show that f cannot be onto. Then we will have proved [0,1] (and hence \mathbb{R}) is uncountable. Consider the value f(1). This is a real number, so we can express it in decimal notation and write

$$f(1) = .x_1^{(1)} x_2^{(1)} x_3^{(1)} \cdots;$$

here each $x_j^{(i)}$ is just a number between 0 and 9. Let's list the other values of f in this way

$$f(1) = .x_1^{(1)} x_2^{(1)} x_3^{(1)} x_4^{(1)} x_5^{(1)} \cdots$$

$$f(2) = .x_1^{(2)} x_2^{(2)} x_3^{(2)} x_4^{(2)} x_5^{(2)} \cdots$$

$$f(3) = .x_1^{(3)} x_2^{(3)} x_3^{(3)} x_4^{(3)} x_5^{(3)} \cdots$$

$$f(4) = .x_1^{(4)} x_2^{(4)} x_3^{(4)} x_4^{(4)} x_5^{(4)} \cdots$$

$$f(5) = .x_1^{(5)} x_2^{(5)} x_3^{(5)} x_4^{(5)} x_5^{(5)} \cdots$$

$$\vdots$$

Now choose numbers y_j from 0 to 9 so that each y_j differs from the diagonal element $x_J^{(j)}$,

$$y_j \neq x_j^{(j)}$$
 for all j .

Consider

$$y = .y_1y_2y_3y_4y_5\cdots.$$

Clearly $y \in [0, 1]$. But by construction there is no integer k such that f(k) = y. So f cannot be onto. So [0, 1] is uncountable!

Here are some problems to test your understanding of countability.

Exercises

- 1. Is the set of pairs of integers countable?
- 2. Is the set of rational numbers \mathbb{Q} (i.e. fractions) countable?

- 3. Is the set of irrational numbers countable?
- 4. Is the set of real numbers x such that $0 \le x \le 1$ countable?

Aside. One of the great problems of the last hundred years is called the continuum hypothesis. It can be stated as follows.

Conjecture. Any set of real numbers is either countable or can be put in one-to-one correspondence with the entire set of real numbers.

As a final example, we consider the Cantor set. We start with the interval of real numbers from 0 to 1 and remove the middle interval from 1/3 to 2/3,

$$S_1 =$$

Then perform the same procedure to each of the remaining intervals to arrive

$$S_2 =$$
 $\underline{\hspace{1cm}}$ $\underline{\hspace{1cm}}$

Continue in this way,

Finally define

$$S = \bigcap_{i} S_{i}.$$

This is called the Cantor set. It looks like a little dust on the real line, and doesn't look very infinite at all. Formally we can ask:

Question. Is S countable?

We are now going to turn to induction, and will use the handout by Tom Davis.