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Begin at the beginning and go on till you come to the end: then stop.

— Lewis Carroll

Consider the following game. Draw a square and label each of the corners with some
whole number. At the midpoint of each square write the (positive) difference between the
numbers at the corresponding vertices. Then draw a new square though the midpoints and
repeat the process. For instance, consider the starting square

  7

22 8

-3

Then write in the positive differences at the midpoints and draw a new square:

  7

22 8

-3

25

10

1

14

And then we repeat the process:

1A good reference for this material is the article “The Convergence of Difference Boxes,” by A. Behn,
C. Kribs-Zaleta, and V. Ponomarenko, American Math. Monthly, volume 112 (1995), pp. 426–438. Much
of the notation and terminology I use is borrowed from that paper. An exhaustive list of references can be
found at http://mathed.uta.edu/˜kribs/diffy.html.

1



2

  7

22 8

-3

25

10

1

15 96

14

11 13

4 4

2

2

2 2

2

0

00

0

The remarkable observation is that we ended up at the square with all vertices labeled 0.
Was that just luck? Was my choice of original square chosen in a special way so that we
ended up with the zero box? What if we allow the starting numbers to be any real numbers
(not just integers)? Does this change things? Given an integer k, can we find a starting box
that reaches the zero box after exactly k steps? What about playing the game on pentagons?
Hexagons? Cubes?

These are the main questions that we want to address over the next two weeks. Before
turning to some exercises, some notation is useful. Start with a diffy box and choose any
corner of it. Beginning with that corner read off the numbers at the other corners moving
in a clockwise fashion. This gives a list of 4 numbers, say a, b, c, and d. Then we label the
diffy box [a b c d]. For instance if we start with the box

5   -3

210

and choose the vertex 5, then we label the box [5 − 3 2 10]. The label attached to a box is
not well-defined in the following sense: if we started with the vertex 2, then we would label
the box [2 10 5 − 3]. But this ambiguity is harmless in practice.

As an example of this notation, look at our original example. Then we can describe the
sequence of diffy boxes in our new notation as

[−3 7 8 22] → [10 1 14 25] → [9 13 11 15] → [4 2 4 6] → [2 2 2 2] → [0 0 0 0].

As a matter of terminology, we say that the original box [−3 7 8 22] has longevity 5 (since
it takes five moves to reach the zero box).
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exercises i: first examples

1. Compute the longevity of the following diffy boxes:

(a) [0 1 0 1]

(b) [1 0 1 0]

(c) [0 0 1 1]

(d) [0 1000 0 1000]

(e) [0 0 100000 100000]

(f) [1 2 3 4]

(g) [1 3 2 4]

(h) [0 1 1.5 1.8]

(i) [0 1 1.54 1.83]

(j) [0 1 1.543 1.839]
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exercises ii: true or false

2. Determine if the following statements are true or false. Be sure to justify your reasoning!

(a) The longevity of [a b c d] equals the longevity of [b c d a].

(b) The longevity of [a b c d] equals the longevity of [c b d a].

(c) The longevity of [a b c d] equals the longevity of [b a d c].

(d) The longevity of [a b c d] equals the longevity of [−a −b −c −d].

(e) The longevity of [a b c d] equals the longevity of [ar br cr cr] for any real number r.

(f) There are integers a < b < c < d so that the longevity of [a b c d] is 4.
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exercises iii: diffy polygons

1. We could play the same game with triangles instead of boxes. In this case, we adopt
the following notation: [a b c] labels a triangle whose vertices (read in clockwise fashion) are
a, b, and c. We may define the longevity of a diffy triangle just as above. For instance, the
diffy box [0 1 1] has infinite longevity since we can compute:

[0 1 1] → [1 0 1] → [1 1 0] → [0 1 1] → [1 0 1] → [1 1 0] → [0 1 1] → · · · .

On the other hand, any diffy triangle of the form [a a a] has longevity 1: [a a a] → [0 0 0].
Find a diffy triangle not of the form [a a a] which has finite longevity.

2. Repeat Exercise (1) for a pentagon instead of a triangle.
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Our next aim is to prove the following theorem:

Theorem. If a, b, c and d are integers, then the diffy box [a b c d] has finite longevity.

The key tool in the proof of the theorem is a notion of the “size” of a diffy box:

Definition. Given a diffy box [a b c d], define the size of [a b c d], denoted |[a b c d]| to
be the largest difference among (not necessarily adjacent) pairs of vertices. For example,
|[−3 7 8 22]| = 25 since 22 − (−3) = 25 is the largest difference among −3, 7, 8, 22.

As as example, we compute the sizes of the various boxes in the first example considered
above. As before, may write that sequence of boxes as

[−3 7 8 22] → [10 1 14 25] → [9 13 11 15] → [4 2 4 6] → [2 2 2 2] → [0 0 0 0].

The corresponding sizes are easy to write down,

25 → 24 → 6 → 4 → 0 → 0.

The key observation is that the sizes in this sequence never increase. In fact, they strictly
decreases until we reached the last two terms (where the sizes were both zero). Here is the
general result we need:

Lemma. Given a pair of diffy boxes B1 → B2, then |B1| ≥ |B2. If no two adjacent corners

of B1 have the same value, then |B1| > |B2|.
Proof. Let a < b < c < d denote the four entries of B1 arranged in increasing order. Then
|B1| = d − a. Meanwhile the four entries of B2 are all between 0 and d − a. So the size of
B2 is at most d − a. This shows that |B1| ≥ |B2|. When can |B1| = |B2|? That is, when
does |B2| = d − a? Since all entries of B2 are between 0 and d − a, |B2| = d − a only if the
entries 0 and d− a are adjacent in B2. But if 0 appears in B2, then two adjacent vertices of
|B1| must have the same value. This proves the second assertion of the lemma. ˜

Now we can return to the theorem above and try to prove it. We start with any diffy box,
say B1, and start performing our difference operation to get a sequence B1→B2→B3→ . . . .
At each step the size is shrinking: B1 ≥ B2 ≥ B3 ≥ · · · . Let k denote the smallest integer
such that |Bk| = |Bk+1| (instead of |Bk > Bk+1|). Such a k always exists. (Why?!) If
|Bk| = 0, then all entries of Bk are the same, Bk+1 is the zero box, and the longevity of B1

is k. On the other hand, suppose that |Bk| 6= 0. Then it looks like our argument might be
stuck. To finish it we need to know one final exercise (included on the next page): any diffy
box of the form [a a x y] has finite longevity. ˜
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exercises iv: finishing the proof.

Suppose B = [a a x y]. Show that the longevity l(B) is less than or equal to 6. (This
exercise completes the proof of the theorem.)
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The previous theorem handles that case of integer diffy boxes. (Where in the proof did we
use the hypothesis that all numbers involved were integers?) So that leads us to ask about
noninteger diffy boxes. Consider the following table (whose first two entries you computed
in the exercises above):

B l(B)
[0 1 1.5 1.8] 9

[0 1 1.54 1.83] 13
[0 1 1.543 1.839] 16

[0 1 1.5437 1.8393] 22
[0 1 1.54368 1.839287] 30

At this point, the diffy boxes in the first column are really just pulled out of a hat. Our
goal in the remainder of the notes is to understand a little bit about how they were pulled
out of the hat. But before turning to that, it is impossible to resist mentioning a few more
words about the numbers appearing above. The fourth entries in the diffy boxes in the above
table are approaching a particular number q where

q =
1 +

3
√

19 + 3
√

33 +
3
√

19 − 3
√

33

3
≈ 1.839286755.

is the unique (positive) real solution to

(1) x3 − x2 − x − 1 = 0.

Meanwhile the third entries in the diffy boxes in the above table are approaching q(q − 1),

q(q − 1) ≈ 1.543689013.

A nice coincidence2 emerges here. Consider the Tribonnaci Sequence (which is a kind of
generalization of the Fibonnaci Sequence),

1, 1, 1, 3, 5, 9, 17, 31, 57, . . . ;

here the next term is obtained by adding the three previous terms together (and the first
three terms are defined to be 1). Let Tn denote the nth term of this sequence. So T4 = 3
and T8 = 31, for instance. Then there is a remarkable closed formula for the nth term,

Tn = nearest integer to 3
(q + 1

3
)n

3
√

586 + 102
√

33

3

√

(586 + 102
√

33)2 + 4 − 2
3
√

586 + 102
√

33

Explaining how one might arrive at a formula like this is another mystery for another day!
The bizarre thing to note is the appearance of q here. At any rate, let me simply add a final
line to the table above:

B l(B)
[0 1 (q − 1)q q] ∞

Since many of you are familiar with the famous Fibonnaci sequence, let me take a moment
to recall the analogous features of it. The first few terms of the Fibonnaci sequence are

1, 1, 2, 3, 5, 8, 12, 20, 32, . . . ;

2Or maybe not a coincidence?
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here the next term is obtained by adding together the previous two (and the first two terms
are defined to be 1). If we let Fn denote the nth term of the Fibonnaci sequence, then we
also have a remarkable formula

Fn = nearest integer to
φn

√
5
,

where φ denote the Golden Mean, i.e. the unique positive real solution to

x2 − x − 1 = 0.

(Compare with Equation (1)). So, indeed, the magic number q bears the same importance
for the Tribonnaci Sequence as the Golden Mean does for the Fibonnaci Sequence. Pretty
neat, huh?

But let’s get back to diffy boxes. We want to have a way to visualize the longevity
calculations that we have been making. In the second set of exercises above, we discovered
a bunch of operations on diffy boxes that do not affect longevity. We can summarize those
longevity-preserving operations as follows:

(a) translation: l([a b c d]) = l([a+r b+r c+r d+r]) for any real number r.
(b) negation: l([a b c d]) = l([−a −b −c −d]).
(c) scaling: l([a b c d]) = l([ra rb rc rd]) for and real number r. (So (b) is really a

special case of (c).)
(d) rotation: l([a b c d]) = l([b c d a]).
(e) reflection: l([a b c d]) = l([b a d c]).

Using these operations, we now describe an algorithm to bring any diffy box into a “standard
form”. First we define what we mean by standard form.

Definition. A diffy box is in standard form if it is of the following three forms: [0 0 0 0];
[0 0 1 1]; or [0 1 x y] with x ≥ 0, y ≥ 1, and

x − 1 ≤ y ≤ x + 1.

In pictures, the diffy box [0 1 x y] is in standard form if (and only if) the point (x, y) lies in
the following region,

y

x

1

1.5

2

2.5

3

0 1 2 3
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Here is the algorithm to take any diffy box [a b c d] and bring it into standard form using
only the longevity preserving operations (a)–(e) described above:

. Step 1. Rotate (operation (d)) the box to obtain a new box [a1 b1 c1 d1] so that the new
box has |d1 − a1| maximal among all adjacent difference |b1 − a1|, |c1 − b1|, |d1 − c1|, and
|d1 − a1|.

. Step 2. Observe that either a1 or d1 is “extreme” in the sense that either a1 or d1 is the
largest entry in the diffy box, or else a1 or d1 is the smallest entry in the diffy box. Reflect
(operation (e)) if necessary to obtain a new diffy box [a2 b2 c2 d2] so that a2 is extreme.

. Step 3. If necessary, reflect to obtain a new box [a3 b3 c3 d3] so that |a3 − b3| ≥ |c3 − d3|.

. Step 4. If a3 is maximal, negate the box (operation (b)). Call the new box [a4 b4 c4 d4].

. Step 5. Translation (operation (a)) by a to make the first entry 0. Call the new box
[0 b5 c5 d5].

. Step 6. At this point, if b5 6= 0, scale (operation (c)) by 1/b to obtain a new box called
[0 1 c6 d6]. Otherwise the box is of the form [0 0 c6 d6]. In either case, the box is now in
standard form.

Here is an example. Take our original box [−3 7 8 22]. Already 22 − (−3) is maximal, so
we don’t have to do anything in Step 1. Step 2 says reflect to get the first coordinate to be
maximal; so we have to reflect to get 22 in the first coordinate to be maximal. The result
is [22 8 7 − 3]. Since |22 − 8| ≥ |7 − (−3))|, we don’t have to do anything in Step 3. Step
4 says to negate the box; we obtain [−22 − 8 − 7 3]. In Step 5, we add 33 to everything
to get [0 14 15 25]. Step 6 says to divide by 14 leaving us with [0 1 15/14 25/14] which, we
observe, is indeed in standard form.

We can summarize the previous paragraph by the following list of steps:

[a b c d] = [−3 7 8 22]
[a1 b1 c1 d1] = [−3 7 8 22]
[a2 b2 c2 d2] = [22 8 7 − 3]
[a3 b3 c3 d3] = [22 8 7 − 3]
[a4 b4 c4 d4] = [−22 − 8 − 7 3]
[a5 b5 c5 d5] = [0 14 15 25]
[a6 b6 c6 d6] = [0 1 15/14 25/14]

Now try your hand at the following exercises.
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exercises v: standard form

By using the above algorithm, bring the following diffy boxes into standard form. Record
each step of the algorithm as in the example above

1. abcd = [10 1 14 25]

[a1 b1 c1 d1] =

[a2 b2 c2 d2] =

[a3 b3 c3 d3] =

[a4 b4 c4 d4] =

[a5 b5 c5 d5] =

[a6 b6 c6 d6] =

2. abcd = [9 13 11 15]

[a1 b1 c1 d1] =

[a2 b2 c2 d2] =

[a3 b3 c3 d3] =

[a4 b4 c4 d4] =

[a5 b5 c5 d5] =

[a6 b6 c6 d6] =

3. abcd = [4 2 4 6]

[a1 b1 c1 d1] =

[a2 b2 c2 d2] =

[a3 b3 c3 d3] =

[a4 b4 c4 d4] =

[a5 b5 c5 d5] =

[a6 b6 c6 d6] =

4. abcd = [2 2 2 2]

[a1 b1 c1 d1] =

[a2 b2 c2 d2] =

[a3 b3 c3 d3] =

[a4 b4 c4 d4] =

[a5 b5 c5 d5] =

[a6 b6 c6 d6] =
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exercises v: standard form (continued)

5. abcd = [1 2 4 8]

[a1 b1 c1 d1] =

[a2 b2 c2 d2] =

[a3 b3 c3 d3] =

[a4 b4 c4 d4] =

[a5 b5 c5 d5] =

[a6 b6 c6 d6] =

6. abcd = [1 2 4 7]

[a1 b1 c1 d1] =

[a2 b2 c2 d2] =

[a3 b3 c3 d3] =

[a4 b4 c4 d4] =

[a5 b5 c5 d5] =

[a6 b6 c6 d6] =

7. abcd = [1 2 3 6]

[a1 b1 c1 d1] =

[a2 b2 c2 d2] =

[a3 b3 c3 d3] =

[a4 b4 c4 d4] =

[a5 b5 c5 d5] =

[a6 b6 c6 d6] =

8. abcd = [1 1 3 5]

[a1 b1 c1 d1] =

[a2 b2 c2 d2] =

[a3 b3 c3 d3] =

[a4 b4 c4 d4] =

[a5 b5 c5 d5] =

[a6 b6 c6 d6] =
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exercises vi: visualizing standard form (continued)

In each of the above eight exercises, you arrived at 8 diffy boxes of the form [0 1 x y] (or
[0 0 1 1]). Plot the (x, y) coordinates of the first four points on the first graph below. Plot
the (x, y) coordinates of the second four points on the second graph below. Also plot the
point ((q − 1)q, q). Can you see a pattern?
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We’re out of time, but I can’t resist the punchline. We can continue doing experiments like
the ones in the last few pages of exercises: we start with a diffy box B1 = [0 1 a b], compute
the sequence of difference operations B1→B2→ . . . , covert each of these to standard form,
Bi = [0 1 xi y1] or [0 0 xi yi], and then plot the sequence of points (x1, y1), (x2, y2), . . . .
(It’s most interesting to do this for diffy boxes with long longevities, like the ones listed in
the table above.) The patterns one finds are as in the examples above: the points radiate
in a spiral out from a central point until one encounters the boundary. What is the central
point? It’s nothing but the magic box [0 1 (q − 1)q q]. If we start at this point, we never

move. This doesn’t mean that [0 1 (q − 1)q q]→[0 1 (q − 1)q q], but only that the difference
operation applied to [0 1 (q − 1)q q] has the same standard form. This, in turn, means that
the longevity of [0 1 (q − 1)q q] is infinite. Indeed it is the unique diffy box in standard form
which has infinite longevity.


