
Introductory Problems

Today we will solve problems that involve counting and probability. Below are problems
which introduce some of the concepts we will discuss.

1. At one of George Washington’s parties, each man shook hands with everyone except his
spouse, and no handshakes took place between women. If 13 married couples attended,
how many handshakes were there among these 26 people?

2. Find the number of positive integers not exceeding 1000 that are neither the square
nor the cube of a positive integer.

3. How many ordered, nonnegative integer triples (x, y, z) satisfy the equation
x + y + z = 11?

4. A circular table has exactly 60 chairs around it. There are N people seated around
this table in such a way that the next person to be seated must sit next to someone.
What is smallest possible value of N?

5. A bag contains a number of marbles of which 78 are red, 24 are blue, and the rest are
green. If the probability of selecting a green marble is 1/3, what is the probability of
selecting a red marble?



Introduction to Counting

We talked about some basic counting last fall in “Trax, Trains, and Trolleys”. We begin
today with a review of some of the concepts from that section.

Product Rule — One basic principle of counting is the
product rule. Suppose we want to count the number of
ways to pick a shirt and pair of pants to wear. If we
have 3 shirts and 2 pairs of paints (a typical graduate
student wardrobe), the total number of ways to choose
an outfit is 2 · 3 = 6. Why? This can be seen by making
a tree diagram. At the first branch we choose a pair of
pants, and at the second branch we choose a shirt. The
number of outfits is the number of leaves at the end of
the tree. In general if you have n ways to choose the first
and m ways the choose the second, independent of the
first choice, there are nm ways to choose a pair.
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Factorial — Suppose you want to count the number of ways to arrange 5 people in a line.
Using the multiplication principle there are 5 ways to pick the first person, 4 ways to pick
the next, and so on. The number of arrangements is 5 · 4 · 3 · 2 · 1 = 120. These types of
products come up often enough that we have a special notation for them: 5! = 5 · 4 · 3 · 2 · 1.
The expression 5! is read “five factorial”. In general

n! = n · (n− 1) · (n− 2) . . . 2 · 1,

and we define
n! = 0.

Suppose you now want to make a line of five people but you now have 12 people to choose
from. The solution using the multiplication rule is 12 · 11 · 10 · 9 · 8. This can also be written
as 12!/(12− 5)!.

Combinations — Notice in the previous example that we were lining people up, and so
different orderings of the same people were counted separately. What if we wished to count
the number of ways to pick five people from a group of 12, but the order of the five chosen
did not matter? The number 12!/(12− 5)! includes all the ways to choose five people when
order matters. Once a group of 5 is picked there are 5! ways to order them, so the number
12!/(12− 5)! counts each group 5! times. Dividing by this gives the correct count

12!

(12− 5)!5!
.

There is notation for numbers of this form(
n

k

)
=

n!

(n− k)!k!
.



This is read “n choose k”, and it represents the number of way to choose (hence the name)
k objects from a set of n objects where the order does not matter.

Binomial Coefficients — You may be familiar with combinations from the binomial the-
orem.
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yn,

or using summation notation

(x+ y)n =
n∑
k=0

(
n

k

)
xn−kyk.

Can you explain the formula using counting?

What to count? — Often the challenge of a counting problem is deciding what to count!
In problem 3 you are asked to count the nonnegative integer solutions of an equation. Think
of solutions as dividing up 11 boxes into three groups. If we put the boxes on the table,
we can form groups by inserting 2 dividers in any of 12 places (groups can be empty). The
case for (x, y, z) = (2, 3, 6) is shown below. Counting the dividers and boxes together, there
are a total of 13 objects, and once we decide which 2 are dividers, a solution is determined.
Therefore the solution is

(
13
2

)
.

x=2 z=6y=3

Pigeonhole principle — “If k + 1 or more objects are to be placed into k boxes, then
there is at least one box containing two or more objects.” This principle is quite easy to
understand, but often the challenge is deciding what is a pigeon and what are the holes.
Problem 4 illustrates the use of the principle. Because no one at the table is currently
sitting next to anyone, there must be at least two empty seats adjacent to each person (one
on the left and one on the right). So that each seated person occupies the maximal space,
divide the table into groups of three seats with one person seated in the middle. There are
60/3=20 groups of three, and therefore N = 20. For this problem the people are pigeons
and the sets of three chairs are the pigeonholes.



Inclusion Exclusion

Problem 2 can be solved using the principle of inclusion-exclusion. There are 1000 positive
integers not exceeding 1000. So is the solution 1000-(# of perfect squares in [1,1000])-(#
of perfect cubes in [1,1000])? Notice that numbers that are both perfect cubes and squares
such as 1 and 64 were subtracted from 1000 twice. To get the correct count, these numbers
must added back in (meaning they would be subtracted only once). The solution is

1000− (# perfect sqares)− (# perfect cubes) + (# perfect sqares and cubes).

Before discussing the general principle in inclusion-exclusion, we introduce some notation.
Let A and B be sets. The number of elements in A is denoted by |A|. The union of A and
B is denoted by A ∪ B and is defined to be the set whose elements are in A or B. The
intersection of A and B is denoted by A∩B and is defined to be the set whose elements are
in both A and B. Following the same arguments used in the solution above,

|A ∪B| = |A|+ |B| − |A ∩ B|.

Now consider three sets A, B, and C. Suppose we want to count the number of elements
in all three sets (|A ∩ B ∩ C|). The number |A| + |B| + |C| counts elements that are in
two sets twice, and elements that are in three sets are counted three times. To correct for
this over-count we subtract all elements in two sets, but now we subtracted the elements in
three sets three times, so these must be added to the count. This is illustrated in the picture
below. The correct count is

|A ∪B ∪ C| = |A|+ |B| + |C| − |A ∩B| − |A ∩ C| − |B ∩ C|+ |A ∩B ∩ C|.

This can be generalized to an arbitrary number of sets using induction. (Can you prove it?).
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Probability

Frequency Probability — We consider here probabilities of events when the number of
outcomes is discrete and finite. We start with the example of rolling a single die. In general
the sample space is defined as the set of all outcomes. For the roll of the die, the sample
space is {1, 2, 3, 4, 5, 6}. An event is any subset of the sample space. The probability of
event E which is a subset of the finite sample space S of equally likely outcomes is

p(E) =
# of elements in E

# of elements in S
.

Suppose we wish to calculate the probability that rolling the die produces and even number.
There are three ways the number on the die can be even, meaning the probability is 3/6 =
1/2.

Independence — Two events A and B are independent if and only if the probability of
A∩B (or A and B happen) is the product of the probabilities, p(A)p(B). You can recognize
independent events as ones for which the outcome of one has no effect on the outcome of the
other. (Note the similarity with the product rule used for counting.) For example suppose
we want to compute the probability of rolling a die twice and getting a 6 each time. The
outcome of the first roll has no effect on the outcome of the second roll. Therefore the
two rolls are independent. The probability of getting a 6 on each roll is 1/6, and so the
probability of getting successive 6’s is 1/6 · 1/6 = 1/36.

Complementary Events — Denote the complement of event A by Ā. The complement
contains all the outcomes of the sample space not in A. Note that

p(A) + p(Ā) = 1.

Sometimes computing the complement probability is easier. Once the complement probabil-
ity is known, the identity above can be used to obtain the probability.

Unions of Events — Let E1 and E2 be two events in the sample space S. Then,

p(E1 ∪ E2) = p(E1) + p(E2)− p(E1 ∩ E2).

The above identity can be proved using inclusion–exclusion. Can you prove it?



Contest Problems

Moderate Problems

1. A mission to Mars will consist of 4 astronauts selected from 14 available. Exactly 5 of
the 14 are trained in exobiology. If the mission requires at least 2 trained in exobiology,
how many different crews can be selected?

(a) 660 (b) 455 (c) 360 (d) 90 (d) 95

2. An 11 × 11 × 11 wooden cube is formed by gluing together 113 unit cubes. What is
the greatest number of unit cubes that can be seen from a single point?

(a) 328 (b) 329 (c) 330 (d) 331 (e) 332

3. How many of the numbers, 100, 101,. . . ,999, have three different digits in increasing
order or in decreasing order?

(a) 120 (b) 168 (c) 204 (d) 216 (e) 240

4. Skiers at the top of the mountain have a variety of choices as they head down the trails.
Assume that at each intersection, a skier is equally likely to go left or right. Find the
percent of skiers who end up at C or D.

DCBA E F

(a) 62.5% (b) 50% (c) 33.3̄% (c) 57.142857% (e) not listed

5. Label one disk “1”, two disks “2”, three disks “3”, . . . , fifty disks “50”. Put these
1 + 2 + 3 + · · · + 50 = 1275 labeled disks in a box. Disks are then drawn at random
without replacement. What is the minimum number of disks that must be drawn to
guarantee drawing at least ten disks with the same label?

(a) 10 (b) 51 (c) 415 (d) 451 (d) 501

6. The Clippers are playing the Warriors in a series of three basketball games. The
Clippers’ probability of winning any particular game is nonzero, independent of other
games, and is 1.6 times as large as its probability of winning the series. What is the
probability of the Clippers winning the series?

(a) 5
32

(b) 10
32

(c) 15
32

(d) 25
32

(e) None of these



7. Suppose you are on a game show. At one point you are presented with three doors;
behind only one of them is a valuable prize. You are asked to choose a door, and you
choose door #1. The host opens one of the doors that you did not select and reveals
that there is no prize. Then you are asked if you would like to take what is behind
door #1 or take what is behind the other door. Find the probability of winning the
valuable prize if you stick with your original guess of door #1.

Challenging Problems

8. First a is chosen from the set {1,2,3,. . . ,99,100}, and then b is chosen from the same
set. The probability that the integer 3a + 7b has units digit 8 is

(a) 1
16

(b) 1
8

(c) 3
16

(d) 1
5

(e) 1
4

9. Nine chairs in a row are to be occupied by six students and Professors Alpha, Beta,
and Gamma. These three professors arrive before the six students and decide to choose
their chairs so that each professor will be between two students. In how many ways
can Professors Alpha, Beta, and Gamma choose their chairs?

(a) 12 (b) 36 (c) 60 (d) 84 (e) 630

10. A spider has one sock and one shoe for each of its eight legs. In how many different
orders can the spider put on its socks and shoes, assuming that, on each leg, the sock
must be put on before the shoe?

(a) 8! (b) 2 · 8! (c) (8!)2 (d) 16!
28 (e) 16!

11. A box contains exactly five chips, three red and two white. Chips are randomly removed
one at a time without replacement until all the red chips are drawn or all the white
chips are drawn. What is the probability that the last chip drawn is white?

(a) 3
10

(b) 2
5

(c) 1
2

(d) 3
5

(e) 7
10

Very Challenging Problems

12. Find
∑49
k=0(−1)k

(
99
2k

)
.

(a) −250 (b) −249 (c) 0 (d) 249 (e) 250

13. For any set S, let |S| denote the number of elements in S, and let n(S) denote the
number of subsets of S, including the empty set and the set itself. If A, B, and C are
sets for which

n(A) + n(B) + n(C) = n(A ∪B ∪ C) and |A| = |B| = 100,



then what is the minimum possible value of |A ∩B ∩ C|?
(a) 96 (b) 97 (c) 98 (d) 99 (e) 100

14. Suppose that 6 boys and 9 girls line up in a row. Let S be the number of places in
the row where a boy and a girl are standing next to each other. For example, for the
row GBGGBBGBBGGGBGG we have S = 8. The average value of S (if all possible
orders of these 15 people are considered) is closest to

(a) 6 (b) 7 (c) 8 (d) 9 (e) 10

15. Shanille O’Keal shoots free throws on a basketball court. She hits the first and misses
the second, and thereafter the probability that she hits the next shot is equal to the
proportion of shots she has hit so far. What is the probability she hits exactly 50 of
her first 100 shots?



Solutions

Note: There are often many ways to arrive at the same solution. Sometimes multiple so-
lutions are given; however, these solutions do not represent all methods for solving the
problems. You may find more clever ways to solve them.

1. Break this into three cases: teams with 2,3, and 4 exobiologists. For each case, choose
the team of exobilogists; then choose the rest of the team from the 9 not trained in
exobiology.

(
5

2

)(
9

2

)
+

(
5

3

)(
9

1

)
+

(
5

4

)(
9

0

)
=

5!

3!2!

9!

7!2!
+

5!

2!3!

9!

8!1!
+

5!

1!4!

9!

9!0!

= 10 · 36 + 10 · 9 + 5 · 1
= 455

2. At most three of the large cube’s six faces can be seen at once. The cubes on these
three faces may be counted using the inclusion-exclusion principle as follows, (# unit
cubes on each face) − (# unit cubes on two faces) + (# unit cubes on all three faces).
This sum is 3 · 112 − 3 · 11 + 1 = 331.

3. For every 3 distinct digits selected from {1, 2, . . . , 9} there is exactly one way to arrange
them into a number with increasing digits, and every number with increasing digits
corresponds to one of these selections. Similarly, the numbers with decreasing digits
correspond to the subsets with 3 elements of the set of all 10 digits. Hence, the answer
is (

9

3

)
+

(
10

3

)
=

9 · 8 · 7
1 · 2 · 3 +

10 · 9 · 8
1 · 2 · 3

=
9 · 8
3 · 2(7 + 10)

= 204

4. At each turn there is the choice of going left or right. The total number of paths down
the mountain is 25. To end up at point C the skier must make 2 left turns and 3 right
turns, and to end up at point D the skier must make 3 left turns and 2 right turns.
To count the number of paths, choose from the five turns when to make the left turns.
The proportion of skiers who end up at C or D is(

5
2

)
+
(

5
3

)
25

=
5

8
= 62.5%.

5. We can draw all of the disks with labels “1” through “9”, because there are not 10 of
any of these disks. There are 1 + 2 + · · · + 9 = 45 of these types of disks. From the
rest of the disks 41 disks, we can draw 9 of each type for a total of 41 · 9 = 369. The
total number of disks drawn is 45 + 369 = 414. If another disk is drawn, its label must
match one of the 369 disks already drawn.



6. Let p denote the probability that the Clippers win a given game, and so the probability
they lose a given game is 1− p. There are three ways the clippers can win the series.
These possibilities are listed below along with their probabilities.

series probability
CWC p(1− p)p
WCC (1− p)p2

CC p2

Summing these probabilities gives the probability of winning the series, which must be
p/1.6. We must solve the equation

2p2(1− p) + p2 = p/1.6.

This equation has the three solutions p = 0, 1/4, and 5/4. It is given that the proba-
bility is not zero, and 5/4 is not a probability. Therefore p = 1/4. The probability of
winning the series is p/1.6 = 5/32.

7. Let’s label the outcomes using the notation “P1H2” to denote the case of “the prize is
behind door 1 and host opens door 2”. First suppose the prize is behind door 1. The
host has a choice of whether to open door 2 or door 3. Suppose that the probability
is 1/2 for each. Therefore the probability of P1H2 is 1/3 · 1/2 = 1/6, and similarly for
P1H3. Now suppose that the prize is behind door 2. Because you have chosen door
1, the host is obligated (probability 1) to open door three, making the probability of
P2H3 1/3 · 1 = 1/3. By the same argument the probability of P3H2 is also 1/3. These
are all the possible outcomes. The probability you will get the prize if you stick with
door 1 is 1/6 + 1/6 = 1/3.

8. Observe the repeating pattern of the units digits of consecutive integral powers of 3
and 7:

31 = 3 71 = 7
32 = 9 71 = 49

33 = 27 71 = 343
34 = 81 71 = 2401

35 = 243 71 = 16807

Note that 25 of the given values for a yield a units digit in 3a of 3, 25 yield 9, 25 yield 7,
and 25 yield 1. Similarly for 7b, each of the possible units digits can be obtained in 25
ways. There are 16 possible pairs of units digits which are all equally likely. The three
pairs which give units digit 8 for 3a + 7b are (1, 7), (9, 9), and (7, 1). The probability
is therefore 3/16.



9. Imagine the six students standing in a row before they are seated. There are 5 spaces
between them, each of which may be occupied by at most one of the three professors.
The arrangement may be counted by assigning a different position to each professor.
There are 5!/3! = 5 · 4 · 3 = 60 ways for the professors to select their places.

10. Ignoring that a sock must be on a foot before a shoe, there are 16! ways the spider can
put on its shoes and socks. Consider just one of the spider’s legs. In exactly half of the
16! cases the sock was put on that leg before the shoe. In the other half of the cases,
the shoe was put on before the sock. Therefore there are 16!/2 cases in which the sock
went on before the shoe for this leg. Repeating this argument for each of the other 7
legs gives that there are 16!/28 ways for the spider to put on its shoes and socks with
the shoes and socks put on in the proper order for each leg.

11. Think of continuing the drawing until all five chips are removed from the box. There
are

(
5
2

)
= 10 possible orderings (choose when the whites were drawn), which are all

equally likely. There are
(

4
2

)
= 6 orderings where the last chip drawn was red. These

are exactly the cases for which all the white chips were drawn before all the red chips.
Therefore the probability is 6/10 = 3/5.

12. By the binomial theorem,

(1 + i)99 =

(
99

0

)
+

(
99

1

)
i+

(
99

2

)
i2 + · · ·+

(
99

99

)
i99.

Note the real part of this series is(
99

0

)
−
(

99

2

)
+

(
99

4

)
−
(

99

6

)
+ · · ·

(
99

98

)
,

which is the sum we are asked to find. If you are familiar with complex exponentials,
compute the sum by

(1 + i)99 =
(√

2 eiπ/4
)99

= 299/2 ei 99π/4

= 299/2 (cos (99π/4) + i sin (99π/4))

= 299/2 (cos (3π/4) + i sin (3π/4))

= 299/2
(
−1/
√

2 + i 1/
√

2
)

The real part is −299/2−1/2 = −2−49. If you are not familiar with complex exponentials,
you may be familiar with Demoivre’s Theorem. If so, ignore the first line of the
computation above. You may also try writing down the first few powers of (1 + i) and
to find the pattern.



13. If a set has k elements, then it has 2k subsets. We are given

2100 + 2100 + 2|C| = 2|A∪B∪C|

2101 + 2|C| = 2|A∪B∪C|

1 + 2|C|−101 = 2|A∪B∪C|−101.

The left side, 1 + 2|C|−101, is larger than 1, and so the right side must also be larger
than 1. Therefore |A ∪ B ∪ C| − 101 > 0, and it is an integer. Thus the left side,
1 + 2|C|−101, must be an integral power of 2. The only integral power of 2 of the form
1 + 2m is 1 + 20 = 21. Hence

|C| = 101 and |A ∪B ∪ C| = 102.

Using the inclusion–exclusion principle,

|A ∩B ∩ C| = |A ∪B ∪ C| − |A| − |B| − |C|+ |A ∩B|+ |A ∩ C|+ |B ∩ C|
= −199 + |A ∩ B|+ |A ∩ C|+ |B ∩ C|.

Using the 2 set inclusion–exclusion principle,

|A ∩B ∩ C| = (|A|+ |B| − |A ∪B|) + (|A|+ |C| − |A ∪ C|)
+(|B|+ |C| − |B ∪ C|)− 199

= 2(|A|+ |B|+ |C|)− 199

−(|A ∪B|+ |A ∪ C|+ |B ∪ C|)
= 403− (|A ∪ B|+ |A ∪ C|+ |B ∪ C|).

Because each union of two sets in contained in the the union of all three sets, we have

|A ∪B|, |A ∪ C|, |B ∪ C| ≤ 102.

This gives a lower bound

|A ∩B ∩ C| = 403− (|A ∪B|+ |A ∪ C|+ |B ∪ C|)
≥ 403− 3 · 102 = 97.

To show this lower bound can be obtained, consider the example

A = {1, 2, . . . , 100}, B = {3, 4, . . . , 102}, C = {1, 2, . . . 102}.

14. Begin by counting the number of ways a boy and girl can be standing in the first and
second positions in line. Call this number N1. There are 6 · 9 pairs of a boy with a
girl and 2 ways to order them, and there are 13! ways to order the remaining people.
Therefore, N1 = 2 · 6 · 9 · 13!. In general, let Nj be the number of ways a boy and girl
can be next to each other in the jth and (j + 1)st positions. For each j = 1, . . . , 14,



Nj = 2 · 6 · 9 · 13!. The average is the sum of the Nj divided by the total number of
orderings, 15!. This is

N1 +N2 + · · ·+ N14

15!
=

14 · (2 · 6 · 9 · 13!)

15!

=
2 · 6 · 9

15

=
36

5
= 7.2

This is closest to 7.

15. Let’s compute the probability that Shanille continues the pattern of a made free throw
followed by a missed free throw until she has shot 100 shots total. This probability is

1

2
· 1

3
· 2

4
· 2

5
· 3

6
· 3

7
· · · 49

98
· 49

99
=

(49!)2

99!
.

This is one possible way in which she makes exactly 50 out of 100 of her first shots.
For any other sequence of 100 shots, the denominators for each shot’s probability will
be identical to those above, since they are simply the number of previous attempts.
For the jth made free throw, the numerator of its probability is j − 1. Similarly for
the jth miss. Since there are exactly 49 made shots and 49 missed shots after the first
two shots, each integer from 1 to 49 appears as the numerator of a probability exactly
twice. The ordering of the numerators will be different for each sequence, but the
product of all the numerators will not change. Therefore any sequence with exactly
50 made shots of the first 100, with the first two as given, has probability of occurring
(49!)2

99!
. The number of such sequences is

(
98
49

)
. Therefore the probability is

(
98

49

)
(49!)2

99!
=

98!

49!49!
· (49!)2

99!
=

98!

99!
=

1

99


