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Plato and Euler

Platonic Solids

Geometric figures in the plane, composed of straight lines, are called poly-
gons. Common and familiar examples include triangles, squares, rectangles,
trapazoids, quadrilaterals, pentagons, hexagons, octagons, etc. There is a
3-dimensional analog of polygons. A closed three-dimensional figure whose
boundary is composed of planar sections is called a polyhedron (plural poly-

hedra). Note that each of these planar sections (called a face), is itself a
polygon.

Common and familiar examples of polyhedra include cubes, boxes, pyra-
mids, prisms, etc. In the plane, when a polygon is such that all of its sides are
of equal length, and all of its angles are of equal measure, it is said to be reg-

ular. Likewise, a polyhedron is regular if all of its faces are congruent regular
polygons, and the angles between adjacent faces are all equal measure.

Here are a couple of examples:

Figure 1: Cube, and Tetrahedron

Regular Polyhedra are often called Platonic Solids because Plato refered
to them in his dialog, Timaeus.

Question 1. How many different Platonic Solids are there? Can we prove it?
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Counting Faces, Edges, and Vertices

We now know there are exactly five Platonic Solids. Here they are:

Figure 2: Tetrahedron, Cube, Octahedron, Dodecahedron, Icosahedron

In proving that there are exactly five Platonic Solids, we counted the
number of faces around a vertex. Let’s make a table enumerating how many
faces, edges, and vertices are in each of the five Platonic Solids.

Platonic Solid Faces Edges Vertices

Tetrahedron 4
Cube 6
Octahedron 8
Dodecahedron 12
Icosahedron 20

Table 1: Platonic Solids: number of faces, edges, and vertices.

Question 2. Fill in the rest of the table. We don’t have these objects in
front of us, but you can try to visualize them. For the dodecahedron and
the icosahedron, you can ask yourself questions like “how many edges are in
each face?” to help fill in the blanks.

Question 3. What patterns do you notice with the table above?
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Duality

In constructing the table for these Platonic Solids, we saw that the number
of edges in the Cube and the Octahedron are the same. We also saw that
the number of faces in the Cube is exactly the number of vertices in the
Octahedron, and vice versa. We saw the exact same relationship between
the Dodecahedron and the Icosahedron. Why?

Question 4. Draw a cube on your scratch paper. Now put a small filled
square in the center of each of its faces. Connect the squares with lines if
the two corresponding faces touch each other along an edge. What shape did
you draw?

Question 5. Repeat the previous question, but start with an Octahedron.
What do you get?



4

More Duality

The Cube and the Octahedron are related in a special way, which we saw
in the previous two questions. This relationship is called geometric dual (or
sometimes just dual). In other words, we would say that the Cube is the
dual of the Octahedron. You can probably guess by looking at the table we
created that the Dodecahedron and the Icosahedron are duals to one another.

Question 6. If the object B is the dual of object A, is it necessarily true that
object A should be the dual of object B?

Question 7. What is the dual of the Tetrahedron?
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Euler Characteristic

We can also see something special in the table if we look along any row.

Question 8. Add the number of Faces to the number of Vertices, and Subtract
the number of Edges. Do this for each row. What do you notice?

This number is called the Euler characteristic, and we will denote it χ. Is
it always the same?

Question 9. Try finding the Euler characteristic to other 3-D shapes. Con-
sider familiar shapes like pyramids and prisms. What do you notice?

Is there anything in the definition of Euler characteristic that requires the
edges or faces to be straight or flat?

Question 10. Below is a map of Arizona and its counties. Treat each county
as a face; treat their boundaries as edges; and where two or more edges come
together, treat that point as a vertex; also treat everything in the plane
outside of Arizona as a face as well. What is the Euler characteristic of this
map? Why is this the case?
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So far, everything we have looked at really is being done on a sphere
(Why?).

Question 11. What is the Euler characteristic of a sphere?

I claim that Euler characteristic is an invariant that depends only on
the topology of the object itself. Therefore, it doesn’t change if we bend,
stretch, or compress the object. Moreover, if we added vertices, edges, or
faces to the object, without changing its topology, then the Euler charac-
teristic will remain the same. To see this, let’s first look at the formula for
Euler characteristic again:

χ = F − E + V.

Question 12. What happens if you add a vertex to an object? Does the
number of edges or faces change?

Question 13. In what ways can we add an edge to an object? What do these
do to the Euler characteristic?

Question 14. In what ways can we add a face to an object? What do these
do to the Euler characteristic?

So the Euler characteristic is a number intrinsic to the underlying topol-
ogy of an object, not its specific geometry. Now let’s see if the Euler charac-
teristic can ever be a “non-two” number.

Question 15. What is the Euler characteristic of the Torus?

Question 16. What is the Euler characteristic of the surface with 2 holes?

Question 17. Can you come up with a conjecture for the Euler characteristic
for orientable surfaces with g holes?1

Non-orientable surfaces have computable Euler characteristics as well.

Question 18. What is the Euler characteristic of the Klein bottle?

Question 19. What is the Euler characteristic of the Projective Plane?

Also, we can talk about the Euler characteristic of surfaces-with-boundary.
We just need to be careful and include all of the vertices and edges in the
boundaries of the surface.

Question 20. What is the Euler characteristic of the Cylinder?

1The number of holes in a surface is called its genus; that is the reason for denoting it

g.
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Question 21. What is the Euler characteristic of the Möbius Strip?

Question 22. Recall that the Klein bottle is the connected sum of two Möbius
Strips. Do your Euler characteristic calculations for these objects make sense
in light of this fact? Why or why not?

Question 23. Similarly, the genus-2 surface is the connected sum of two genus-
1 surfaces. Does our conjecture above make sense in light of this fact? If we
have two surfaces, S and T , and we know what their Euler characteristics
are, say χ(S) and χ(T ), what is the Euler characteristic of the connected
sum S#T?

Question 24. There is another way to join two surfaces, S and T , namely to
glue them together at one point2; the fancy word for it is the wedge product,
and is denoted S ∧ T . What is the Euler characteristic of S ∧ T , given the
Euler characteristics of S and T?

Question 25. If two objects have the same Euler characteristic, must they be
topologically equivalent? Can we come up with a bunch of different surfaces
with the same Euler characteristic?

2The resulting object is not a surface, but it is still an interesting object worthy of

discussion


