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We will consider some mathematical problems for which the common feature is
the use of ordering between numbers.

1. Tallest of the shortest or shortest of the tallest?

Problem 1. Nine students are positioned in three rows each containing three stu-
dents. From each column pick the shortest student, then pick the tallest of these
three (short) students, and tag him A. Next choose the tallest student in each row,
then from these three (tall) students, pick the shortest and tag him B.

Which one of A and B is taller (if different people)?

Proof. There are three cases:

(1) A and B are in the same column. Then, since in each column we picked
the shortest student, A is shorter than B.

(2) A and B are in the same row. Then, since in each row we picked the tallest
student, B is taller than A.

(3) A and B are neither in the same row, nor in the same column. Let C be a
student who is in the same row as A and in the same column as B. Then
by the same arguments as before, C is taller than A, but B is taller than
C. This means that again B must be taller than A.

A

B C

In conclusion, the shorterst of the tallest is taller than the tallest of the shortest.
˜

Notice that in the argument above, we never used that there are 9 students,
arranged 3×3. The same statement and proof hold if we have mn students arranged
in m rows, with n students in every row. In fact, we may formalize this problem
using numbers (each height is a number) as follows.

Problem 2. Consider an m × n table of numbers such that at the (i, j)-position
we have the number aij , 1 ≤ i ≤ m, 1 ≤ j ≤ n. (This is a matrix.) Then

m

min
i=1

n
max
j=1

aij ≥
n

max
j=1

m

min
i=1

aij . (1)

Proof. This is the same as the solution for problem 1. ˜

A harder problem involving tables of integers is the following.
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Problem 3. In a 10 × 10 table are written the integers from 1 to 100. From each
row we select the third largest number. Show that the sum of these numbers is not
less than the sum of numbers in some row.

Proof. Let’s denote by a1, . . . , a10 the ten numbers selected in this way, ordered as
a1 > a2 > · · · > a10. We want show that the sum a1 + a2 + · · ·+ a10 is greater than
the sum in some row. So we are looking for a row which potentially gives us a small
sum. Since each of the numbers ai is the third largest in its row, it makes sense
to look at the row containing the smallest one, a10. Let’s see what the maximum
possible sum is that this row can have. There are two numbers greater than a10

there, so at most, they are 100 and 99. Then there is a10, and then there are 7 more
numbers less than a10. These 7 numbers can be at most a10−1, a10−2, . . . , a10−7.

So the maximum sum that the row containing a10 can have is

maxsum(row) = 100 + 99 + a10 + (a10 − 1) + · · · + (a10 − 7) = 8a10 + 171. (2)

On the other hand let’s see how small the sum a1 + a2 + a3 + · · · + a10 is. a1

is the largest among these ten numbers: this means that in each row there are at
most two numbers larger than a1, so there are at most 20 numbers in the matrix
larger than a1. This implies a1 ≥ 80. Now for a2: all numbers in the row containing
a1 could be larger than a2, but then only 18 more numbers, so there are at most
28 numbers larger than a2. So a2 ≥ 72. So far the sum is

sum(ai) ≥ 80 + 72 + (a3 + a4 + · · · + a10) = 152 + (a3 + a4 + · · · + a10). (3)

Since in the equation (2) we have 8a10, it makes sense to compare the rest of ai’s
with a10. At the minimum, they are a9 ≥ a10 + 1, a8 ≥ a10 + 2, . . . , a3 ≥ a10 + 7.

sum(ai) ≥ 80 + 72 + 8a10 + 1 + 2 + · · · + 7 = 8a10 + 180. (4)

From equations (4) and (2), we see that sum(ai) is greater than the sum of the row
containing a10.

˜

A simpler case of the same problem, where the same kind of proof works is the
following.

Problem 4. In a 4× 4 table are written the integers from 1 to 16. From each row
select the second largest number. Show that the sum of these numbers is not less
than the sum of numbers in some row.

Is the same true if instead we choose the third largest number in each row?

Proof. For the second largest number chosen, the similar proof as before works.
Let a1 > a2 > a3 > a4 be the numbers chosen. Then, following the same logic for
the row containing a4, we find that

maxsum(row) = 16 + a4 + (a4 − 1) + (a4 − 2) = 3a4 + 13. (5)

Then we notice that a1 ≥ 12. So we have:

sum(ai) ≥ 12 + a4 + a4 + 1 + a4 + 2 = 3a4 + 15. (6)

Then since sum(ai) > maxsum(row), we get the conclusion.

Now if we change the problem, and choose the third largest number in each
row, the same proof would not work. If we do the calculations, we find that
maxsum(row) = 2a4 +30, and sum(ai) ≥ 2a4 +15, so we cannot conclude anything
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7 8 9 10
5 6 11 12
3 4 13 14
1 2 15 16

based on this. But we can construct a table for each the sum of the third largest
from every row is less than the sum in each row:

The sum in each row is 34, and the sum of the “third largest” numbers is 8 +
6 + 4 + 2 = 20. ˜

Question. Can you find a generalization of these examples for an n × n table?

2. Differences

Problem 5 (Putnam 1965). Consider the integers from 1 to n, n ≥ 2. We want to
order them in such a way that, except for the first integer at the left, every integer
differs by 1 from some integer at the left of it. In how many ways can we do this?

Proof. Let’s look at some small values of n first to get an idea. We list all possible
arrangements (there are n! possibilities), and then select those which satisfy the
condition.

If n = 2, then we have two arrangements (12) and (21) and they are both good.
If n = 3, then we have 6 possible arrangements and good ones are marked in

boxes:

(123) (132) (213) (231) (312) (321) . (7)

If n = 4, there are 24 possible arrangements:

(1234) (1243) (1324) (1342) (1423) (1432)

(2134) (2143) (2314) (2341) (2413) (2431)

(3124) (3142) (3214) (3241) (3412) (3421)

(4123) (4132) (4213) (4231) (4312) (4321) (8)

We notice that for n = 2 there are 2 good arrangements, for n = 3, there are 4,

and for n = 4, there are 8. So we may conjecture that for an arbitrary n, there are
2n−1 good arrangements.

But if we look more closely, we see another pattern, all good arrangements end
in 1 or n. Let’s try to prove this first by induction. Assume that for n− 1, all good
arangements end in 1 or n − 1. Now let’s consider a good arrangement for n, and
assume it doesn’t end in 1. So we want to prove it ends in n. Notice first that n−1
cannot be at the right of n, because then the largest possible number at the left of
n if n − 2, so n does not have the property. Therefore n − 1 must be at the left
of n. Then by removing n we must get a good arrangement for n − 1, which, by
induction, must end in n− 1, because the original arrangement didn’t end in 1. So
n must have been the last entry.

OK, so now by induction, we know that every good arrangement must end in
n or in 1, moreover we may assume there are 2n−2 good arrangements for n − 1.

Notice further that from any good arrangement which ends in n we can construct
a good one which ends in 1, by replacing every j in the arrangement with n+1− j.
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For example, (3214) gives (2341) by replacing j with 5−j. So it is sufficient to show
that there are 2n−2 good arrangements that end in n. This follows by induction by
adding an n at the end of every good arrangement for n − 1. ˜

Problem 6. Assume n ≥ 3. Consider 2n distinct positive integers a1, a2, . . . , a2n

not exceeding n2. Prove that there are at least three differences ai − aj that are
equal.

Proof. Again, let’s begin with an example, n = 3. From the numbers 1, 2, 3, . . . , 9
we should pick 6 different arbitrary ones, and see that there are at least 3 equal
differences.

For example, let’s say we pick first 1, then 2 and 3;

1 , 2 , 3 , 4, 5, 6, 7, 8, 9. (9)

The differences 3− 2 = 2− 1 = 1. If next we pick 4, since 4− 3 = 1, we would have
our three equal differences. So let’s pick 5.

1 , 2 , 3 , 4, 5 , 6, 7, 8, 9. (10)

Now, we can’t pick 6 next because 6 − 5 = 1. So we pick 7.

1 , 2 , 3 , 4, 5 , 6, 7 , 8, 9. (11)

Now we have two differences equal to 1, and two differenced equal to 2, and we
have one more number to pick among 8 or 9. If we pick 8, then 8 − 7 = 1, if we
pick 9, then 9 − 7 = 2, so we fought in vain...

This examples gives the idea for the proof: we look at the numbers ordered, and
we consider differences of consecutive numbers. So let’s assume the order is

a1 < a2 < a3 < · · · < a2n, (12)

(all are numbers between 1 and n2), and write the differences between consecutive
numbers:

a2 − a1, a3 − a2, . . . , a2n − a2n−1. (13)

These differences are all positive numbers. Their total sum, call it ∆, is

∆ = (a2 − a1) + (a3 − a2) + · · · + (a2n − a2n−1) = a2n − a1 ≤ n2
− 1. (14)

On the other hand, if we assume that no three differences are the same, then among
the differences there could be at most two 1’s, at most two 2’s,..., at most two n’s.
This means that

∆ ≥ 1 + 1 + 2 + 2 + · · · + n + n = 2(1 + 2 + · · · + n) = n(n + 1) = n2 + n. (15)

Since n2 + n > n2 − 1, this is a contradiction. ˜
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