February 8, 2008

Pell Equations.

Problem 1. Recall the root-mean-square of the positive integers $a_{1}, \ldots a_{n}$ is defined by

$$
\begin{equation*}
r m s\left(a_{1}, \ldots, a_{n}\right)=\sqrt{\frac{a_{1}^{2}+\cdots+a_{n}^{2}}{n}} \tag{1}
\end{equation*}
$$

What is the smallest positive integer $n \geq 2$ such that $r m s(1,2, \ldots, n)$ is an integer? Solution. Recall the formula for the sum of squares of the first n numbers:

$$
\begin{equation*}
1^{2}+2^{2}+\cdots+n^{2}=\frac{n(n+1)(2 n+1)}{6} \tag{2}
\end{equation*}
$$

Then the problem asks when is

$$
\begin{equation*}
\operatorname{rms}(1,2, \ldots, n)=\sqrt{\frac{1^{2}+2^{2}+\cdots+n^{2}}{n}}=\sqrt{\frac{n(n+1)(2 n+1)}{6 n}}=\sqrt{\frac{(n+1)(2 n+1)}{6}} \tag{3}
\end{equation*}
$$

a positive integer, say k. In other words, we need to solve the equation

$$
\begin{equation*}
\frac{(n+1)(2 n+1)}{6}=k^{2}, \text { or, equivalently } 2 n^{2}+3 n+1-6 k^{2}=0 \tag{4}
\end{equation*}
$$

for n and k positive integers. Multiply the equation by 8 and complete the square to obtain

$$
\begin{equation*}
(4 n+3)^{2}-48 k^{2}=1 \tag{5}
\end{equation*}
$$

Let us denote $x=4 n+3$ and $y=4 k$. Then we are looking for integer solutions for the equation

$$
\begin{equation*}
x^{2}-3 y^{2}=1 \tag{6}
\end{equation*}
$$

(in fact x and y have to satisfy the additional requirements that x have residue 3 when divided by 4 , and y be divisible by 4 .

The equation (6) is a particular case of the so-called (by Euler) Pell equations. The more general form is

$$
\begin{equation*}
x^{2}-D y^{2}=1 \tag{7}
\end{equation*}
$$

where D is a positive integer which is not a square. The positive integer solutions of these equations are obtained as follows:

1 Find a minimal solution. There is a general algorithm for this involving continued fractions, but our equation is simple enough so we can just guess it. Call this solution $\left(x_{0}, y_{0}\right)$. In the case of $(6)\left(x_{0}, y_{0}\right)=(2,1)$.
2 All the other solutions $\left(x_{m}, y_{m}\right)$ are obtained from $\left(x_{0}, y_{0}\right)$ by the formula

$$
\begin{equation*}
x_{m}+y_{m} \sqrt{D}=\left(x_{0}+y_{0} \sqrt{D}\right)^{m+1}, n \geq 1 \tag{8}
\end{equation*}
$$

Equation (8) gives also a recursive way to compute $\left(x_{m}, y_{m}\right)$. Assume $\left(x_{m-1}, y_{m-1}\right)$ is known. Then

$$
\begin{align*}
& x_{m}=x_{0} x_{m-1}+D y_{0} y_{m-1} \tag{9}\\
& y_{m}=y_{0} x_{m-1}+x_{0} y_{m-1} \tag{10}
\end{align*}
$$

In the case of (6), this becomes

$$
\begin{aligned}
& x_{m}=2 x_{m-1}+3 y_{m-1}, \\
& y_{m}=x_{m-1}+2 y_{m-1} .
\end{aligned}
$$

We apply these formulas recusively starting with $\left(x_{0}, y_{0}\right)=(2,1)$, and look for the first $m \geq 1$, for which x_{m} and y_{m} satisfy the desired conditions for divisibility by 4. We get

m	x_{m}	y_{m}
0	2	1
1	7	4
2	26	15
3	97	56
4	362	209
5	1351	780

The first good $m \geq 1$ is $m=5$. We get $x_{m}=1351=4 n+3$, so $n=337$, and $y_{m}=780=4 k$, so $k=195$.

The answer is $\mathbf{n}=\mathbf{3 3 7}$.
Here are some other problems using Pell equations. They are taken from Andrica and Gelca's "Mathematical Olympiad Challenges".

Problem 2. Assume you have ℓ pennies. What are the first three smallest ℓ 's for which you can arrange the pennies both in an equilateral triangle, and in a square.

In other words, what are the three smallest ℓ 's such that ℓ is both a triangular number $\frac{n(n+1)}{2}$, and a perfect square m^{2}.
Answer. $\ell=1,36,1225$. The Pell equation that one obtains is $x^{2}-2 y^{2}=1$, with $x=2 n+1$ and $y=2 m$.

Problem 3. Solve the equation $(x+1)^{3}-x^{3}=y^{2}$ in positive integers.
Problem 4. The triangle with sides $3,4,5$ has integer area. Find all triangles with consecutive sides $n-1, n, n+1$ and integer area.
(Hint: Use Hero's formula of area A in terms of sides a, b, c :

$$
A=\frac{1}{4} \sqrt{(a+b+c)(a+b-c)(a+c-b)(b+c-a)} .
$$

Problem 5. Find all positive integers m, such that $\frac{m(m+1)}{3}$ is a perfect square.

