MATH CIRCLE SPRING CONTEST I

February 20, 2008
1.

The following four-by-four square consists of entries 0,1 , and 2 such that the row and column sums include each number from 1 to 8 exactly once:

$$
\begin{array}{llll}
2 & 2 & 2 & 2 \\
0 & 2 & 2 & 2 \\
0 & 0 & 1 & 2 \\
0 & 0 & 0 & 1
\end{array}
$$

(a) Prove or disprove: there exist such a four-by-four square which has exactly three entries labeled 1. (Either find such a square or prove that no such square exists.)
(b) Prove or disprove: there exist such a four-by-four square which has exactly four entries labeled 1. (Either find such a square or prove that no such square exists.)
2.

How many positive integers equal three times the sum of their digits? (For instance 27 is such a number since $27=3(2+7)$.)

Consider the following game played with points on the plane whose coordinates are both integers. A legal move consists of replacing a point (x, y) with a new point $\left(x^{\prime}, y^{\prime}\right)$ assuming there is a third point (z, w) at the midpoint between (x, y) and $\left(x^{\prime}, y^{\prime}\right)$. Prove or disprove: there is a sequence of legal moves which carries the set of points $\{(0,0),(0,1),(1,0),(1,1)\}$ to the set $\{(0,0),(1,1),(2,-1),(2,0)\}$.
4.

Find all integers n which are equal to the square of the number of positive divisors of n. (For instance, nine is such a number: it has three positive divisors (1,3 , and 9), and three squared is nine.)

