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Begin at the beginning and go on till you come to the end: then stop.

— Lewis Carroll

This week we start with some identities buried in Pascal’s Triangle. Here is a warm-up:
Problem. Take a row of Pascal’s Triangle and enumerate its (nonzero) entries as P0, P1, P2, . . . .
Find a formula for

P0 + P2 + P4 + · · ·

and prove that the formula is correct.

The problem follows pretty easily from considering the number of subsets of n objects
which has an even number of elements.

Now that we’re warmed up, here is a more challenging one.
Problem. Let ai denote the number of odd entries in the ith row of Pascal’s

Find (with proof) a formula for ai. For instance, the zeroth row consists of the apex 1
and has a single odd element, so a0 = 1. The first row, 1 1, has 2, so a1 = 2. The second, 1
2 1, gives a2 = 2, and the third, 1 3 3 1, gives a3 = 4.

We can approach this problem much the way that we approached the tiling problems last
week, that is by finding a natural recurrence which (if we’re lucky, as we were last week with
the Fibonacci recurrence) we can recognize as something familiar.

We start by writing out a few rows of Pascal’s Triangle and starring the odd entries.

1*
1* 1*

1* 2 1*
1* 3* 3* 1*

1* 4 6 4 1*
1* 5* 10 10 5* 1*

1* 6 15* 20 15* 6 1*
1* 7* 21* 35* 35* 21* 7* 1*

1An excellent reference for this material (and much more) is the book Proofs That Really Count by Arthur
Benjamin and Jennifer Quinn published by the Mathematical Association of America. (At the time of writing,
a significant portion of the book was freely available from books.google.com .) My notes are shamelessly
stolen from notes by Hugo Rossi available at http://www.math.utah.edu/teacherscircle/schedule.html .
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Now let’s forget about the numbers are just look at the *’s:

*
* *

* *
* * * *

* *
* * * *

* * * *
* * * * * * * *

Now a pattern seems to be emerging: the starts keep reproducing themselves. For instance,
if we break up the rows into chunks of four we get

*
* *

* *
* * * *

* *
* * * *

* * * *
* * * * * * * *

And it’s clear that stars in rows 5–8 consist of two copies of the stars in rows 1–4. Actually
this pattern appears everywhere. If we instead look at the first four rows broken into chunks
of two, we get

*
* *

* *
* * * *

and again the stars in rows 3–4 consist of two copies of the stars in rows 1–2. We could even
go back one step further to get

*
* *

and the pattern once again holds: the stars in row 1 consists of two copies of the stars in
row 0. So we are led to the following conjecture:

Conjecture. Write out the list of the numbers a0, a1, . . . of odd entries in the first 2n

rows of Pascal’s Triangle. Then the list of the number of odd entries in the next 2n rows of
Pascal’s triangle is twice the original list. More succinctly, for each n ≥ 1 and 0 ≤ j < 2n

the number of odd entries in rows 2n + j is twice the number of odd entries in row j, i.e.

a2n+j = 2aj .

Based on the pictures above the conjecture follows easily by induction and the following
simple rules: odd plus odd is even, odd plus even is odd, and even plus even is even. I’ll
leave that to you.

Notice that the sequence whose jth term is the number of odd entries in the jth row of
Pascal’s Triangle is entirely determined by its zeroth value, namely 1, and the recurrence
provided by the conjecture. The sequence starts with a 1, and then the next element must
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be twice it, namely 2. The next two elements must be double the preceding two, so we’re
up to

1, 2, 2, 4.

The next four entries must be double the first four, so we now have

1, 2, 2, 4, 2, 4, 4, 8,

and doubling again gives

1, 2, 2, 4, 2, 4, 4, 8, 2, 4, 4, 8, 4, 8, 8, 16, . . .

and so on. Note that the elements in rows 2n − 1 of Pascal’s Triangle are always all odd.
The question remains: does this sequence appear in a more familiar way? To answer it,

we need only find another sequence with the same starting value and the same recurrence
relation.

The appearance of all those 2n’s might suggest looking in the binary world. And, indeed,
counting in binary satisfies a similar kind of recurrence. Suppose we write out the first 2n

n-digit binary numbers. The way to get the next 2n binary numbers is to simply add a
one in front of the list of n-digit numbers. For instance, if we start with the first 8 binary
numbers (written as three digit numbers),

000, 001, 010, 011, 100, 101, 110, 111,

then we get the next 8 binary numbers by placing a 1 in front of the list we already have,

1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111.

Now, after padding with zeros, we have the list of the first 16 four digit binary numbers

0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111, 1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111.

This is similar to the situation we encountered with Pascal’s Triangle, but not precisely the
same. We need to get doubling into the mix somehow.

Let’s take a look instead at the sequence b0, b1, . . . , where bi is two raised to the power
of the number of 1’s in the binary representation of i. For instance, for the first 16 binary
numbers, the list of the corresponding number of 1’s is

0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4,

and after raising 2 to each of these powers we get

1, 2, 2, 4, 2, 4, 4, 8, 2, 4, 4, 8, 4, 8, 8, 16.

This is just the sequence we encountered by considering the odd entries in Pascal’s Triangle.
How can we prove they are the same? It is clear from the description of binary counting that
the sequence b0, b1, . . . satisfies the same recurrence as indicated in the conjecture. Since
b0 = 1, we conclude ai = bi for all i. We have thus proved:

Theorem. The number of odd entries in the ith row of Pascal’s Triangle is 2j where j is
the number of 1’s in the binary expression of i.
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Here are some more problems for you to try your hand at.

Problem 3. Let fn denote the number of tiling of the n-board by 1- and 2-tiles. Prove that

3fn = fn+2 + fn−2.

Problem 4. Show that if m divides n, then fm−1 divides fn−1.

Problem 5. Let Ln denote the number of tilings of an n-bracelet by 1- and 2-tiles. Show

Ln = fn + fn−2.

Problem 6. Show that
Ln = Ln−1 + Ln−2.

Problem 7. Prove that
f2n−1 = Lnfn−1.

Problem 8. Prove that
5fn = Ln + Ln−2.


