A 3-D curve can be given parametrically by \(x = f(t) \), \(y = g(t) \) and \(z = h(t) \) where \(t \) is on some interval \(I \) and \(f \), \(g \), and \(h \) are all continuous on \(I \).

We could specify the curve by the position vector
\[
\mathbf{r}(t) = f(t)\mathbf{i} + g(t)\mathbf{j} + h(t)\mathbf{k}.
\]

Given a point \(P_0 \) determined by the vector, \(\mathbf{r}_0 \) and a vector \(\mathbf{v} = ai + bj + ck \), the equation
\[
\mathbf{r} = \mathbf{r}_0 + \mathbf{v} t
\]
determines a line passing through \(P_0 \) at \(t = 0 \) and heading in the direction determined by \(\mathbf{v} \).

(A special case is when you are given two points on the line, \(P_0 \) and \(P_1 \), in which case \(\mathbf{v} = \overrightarrow{P_0P_1} \).)

\[
\mathbf{r} = \langle x, y, z \rangle, \quad \mathbf{r}_0 = \langle x_0, y_0, z_0 \rangle \Rightarrow \langle x, y, z \rangle = \langle x_0, y_0, z_0 \rangle + \langle a, b, c \rangle t
\]

\[
x = x_0 + at, \quad y = y_0 + bt, \quad z = z_0 + ct
\]

These become the parametric equations of a line in 3D where \(a, b, c \) are called direction numbers for the line (as are any multiples of \(a, b, c \)).
EX 1 Find parametric equations of a line through
$(2,-1,-5)$ and $(7,-2,3)$.

Symmetric Equations for a line

$x = x_0 + at, y = y_0 + bt, z = z_0 + ct \quad a \neq 0$

$t = \frac{x - x_0}{a} \quad t = \frac{y - y_0}{b} \quad t = \frac{z - z_0}{c}$

This is the line of intersection between the two planes given by

$\frac{x - x_0}{a} = \frac{y - y_0}{b} \quad \text{and} \quad \frac{y - y_0}{b} = \frac{z - z_0}{c}$.
EX 2 Write the symmetric equations for the line through (-2,2,-2) and parallel to 〈7,-6,3〉.

EX 3 Find the symmetric equations of the line through (-5,7,-2) and perpendicular to both 〈3,1,-3〉 and 〈5,4,-1〉.

EX 4 Find the symmetric equations of the line of intersection between the planes x + y - z = 2 and 3x - 2y + z = 3.
Tangent Line to a Curve

If \(\vec{r} = \vec{r}(t) = f(t) \hat{i} + g(t) \hat{j} + h(t) \hat{k} \) is a position vector along a curve in 3D,

\[
\vec{r}'(t) = \lim_{h \to 0} \frac{\vec{r}(t + h) - \vec{r}(t)}{h} \Rightarrow \vec{r}'(t) = f'(t) \hat{i} + g'(t) \hat{j} + h'(t) \hat{k}
\]

is a vector in the direction of the tangent line to the 3D curve. (This holds in 2D as well.)

EX 5 Find the parametric equations of the tangent line to the curve

\[x = 2t^2, \ y = 4t, \ z = t^3 \text{ at } t = 1. \]