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Goal:

Describe the relation between the way a fluid flows along or across

the boundary of a plane region and the way fluid moves around
inside the region.

Circulation or flow integral

Assume F'(x,y) is the velocity vector field of a fluid flow. At each

point (x,y) on the plane, F(x,y) is a vector that tells how fast and
in what direction the fluid is moving at the point (x,y).

Assume r{t)=x(t)i + y(t)j, t=[a,b], is parameterization of a closed
curve lying.in the reglon of flyid flow.
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We want to measure "how much" fluid is moving alongﬁtﬁa'curve 7(1).
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EX 1 Let 7(z) be the parameterization of the unit circle centered at
the origin. Draw these vector fields and think about how the
fluid moves around that circle.
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When F(x,y) is perpendicular to the tangent line at a point, then there is no

flow along the circl

e.

So F(x,y)-T(x,y) measures the flow along the circle where T(x,y)=F(t) .
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We define the circulation ofFanng C, a parameterized curve from
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EX 2 Given C:

y =asint,

x=acost tc=[02x]

find the circulation along C for each of these.
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Flux across a curve

Given F(x,y) = M{ + Nj (vector velocity field) and a curve C,

with the parameterization 7(?) = x(1)i + y(1)],

te/a,b] , such

that C is a positively oriented, simple, closed curve.

We want to know the rate at which a fluid is entering and leaving
the area of the region enclosed by a curve, C. This is called flux.

F(x,y) n(x,
so flux = P ds
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EX 3 Find the flux across C: 7(t) = (a cos )i + (asin t)), t € [0,2n]
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Two Forms of Green's Theorem
in The Plane

Let F(x,y) = Mi + Nj Let F(x,y) = Mi + N}’

Let C be a simple, closed,
positively oriented curve
enclosing a region R in

Let C be a simple, closed,
positively oriented curve
¢ enclosing a region R in

the xy-plane. the xy-plane.
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EX 5 Verify both forms of Green's theorem for the field
Fxy) = (x-p)i +xj M=%y ,N=X

and the region R bounded by the circle
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EX 6 Evaluate the integral <§> (xy dy - y* dx) where C is the square
C

cut from the first quadrant by the linesx =7 and y = 1.
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EX 7 Calculate the flux of the field Fi(x,y) = xi + y/
“h‘ across the square bounded by the linesx =+ /7andy =+ /.
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