Differentiability/Gradient

\[f_x = \lim_{h \to 0} \frac{f(x + h, y) - f(x, y)}{h} \]

\[f_y = \lim_{h \to 0} \frac{f(x, y + h) - f(x, y)}{h} \]

\[
\int_{y_0}^{y_0+1} \int_{x_0}^{x_0+2} \rho(x, y) \, dx \, dy = \int_{y_0}^{y_0+1} \left(\int_{x_0}^{x_0+2} \rho(x, y) \, dx \right) \, dy \\
= \int_{y_0}^{y_0+1} \left(\frac{3y^2}{2} \right) \, dy = \frac{3}{2} \int_{y_0}^{y_0+1} y^2 \, dy \\
= \left[\frac{y^3}{3} \right]_{y_0}^{y_0+1} = \frac{1}{2}
\]
Differentiability
For a function of one variable, the derivative gives us the slope of the tangent line, and a function of one variable is differentiable if the derivative exists. For a function of two variables, the function is differentiable at a point if it has a tangent plane at that point. But existence of the first partial derivatives is not quite enough, unlike the one-variable case.

Theorem
If \(f(x,y) \) has continuous partial derivatives \(f_x(x,y) \) and \(f_y(x,y) \) on a disk \(D \) whose interior contains \((a,b) \), then \(f(x,y) \) is differentiable at \((a,b) \).

Theorem
If \(f \) is differentiable at \((a,b) \), then \(f \) is continuous at \((a,b) \).

\[\text{differentiability } \Rightarrow \text{ continuity} \]
Gradient of f

$$\nabla f(p) = \nabla f(a,b) = \langle \hat{f}_x(a,b), \hat{f}_y(a,b) \rangle = \hat{f}_x(a,b)\hat{i} + \hat{f}_y(a,b)\hat{j}$$

for a function, $z = f(x,y)$.
(Note: This gradient lives in 2-D space, but it is the gradient of a function whose graph is 3-D.)

Gradient is a vector!!

Properties of Gradient Operator

p is the input point (a,b).

$$\begin{align*}
\nabla [f(p) + g(p)] &= \nabla f(p) + \nabla g(p) \\
\nabla [\alpha f(p)] &= \alpha \nabla f(p), \ \alpha \in \mathbb{R} \\
\nabla [f(p)g(p)] &= f(p)\nabla g(p) + \nabla f(p)g(p) \\
\text{("product rule")}
\end{align*}$$

Gradient is a linear operator
EX 1 Find the gradient of f.

a) $f(x,y) = x^3y - y^3$
\[
\nabla f = f_x \hat{i} + f_y \hat{j} = (3x^2y)\hat{i} + (x^3 - 3y^2)\hat{j}
\]

b) $f(x,y) = \sin^3(x^2y)$
\[
\nabla f = 3\sin^2(x^2y)\cos(x^2y)(2xy)\hat{i} + 3\sin^2(x^2y)\cos(x^2y)(x^3)\hat{j}
\]

c) $f(x,y,z) = xz \ln(x+y+z)$
\[
\nabla f = f_x \hat{i} + f_y \hat{j} + f_z \hat{k}
\]
\[
= (z \ln(x+y+z) + \frac{xz(1)}{x+y+z})\hat{i}
\]
\[
+ (\frac{xz(1)}{x+y+z})\hat{j} + (x \ln(x+y+z) + \frac{xz(1)}{x+y+z})\hat{k}
\]
Tangent Plane

Curves in 2-D

Remember the equation of the tangent line to a 2-D curve:

\[y - f(a) = f'(a)(x-a) \]

\[y = f(a) + f'(a)(x-a) \]

eqn of tangent line to curve \(y = f(x) \) (in 2-D)

Surfaces in 3-D

Find \(\vec{u} \) and \(\vec{v} \) (vectors in the tangent plane)

\[\vec{n} = \vec{u} \times \vec{v} \]

\(\vec{u} = \text{no } y \text{-movement} \)

\[= <1, 0, f_x(a, b)> \]

\(\vec{v} = \text{no } x \text{-movement} \)

\[= <0, 1, f_y(a, b)> \]

\[\vec{n} = \vec{u} \times \vec{v} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 0 & f_x \\ 0 & 1 & f_y \end{vmatrix} = \hat{k}(-f_x(a, b)) - \hat{j}(f_y(a, b)) + \hat{i}(1) \]

\[\vec{n} = <-f_x(a, b), -f_y(a, b), 1> \]

\[\Rightarrow \text{eqn of plane } w/ \vec{n} \text{ normal vector} \]

and through pt \((a, b, f(a, b)) \)

\[<-f_x(a, b), -f_y(a, b)> \cdot <x-a, y-b, z-f(a, b)> = 0 \]

\[-f_x(a, b)(x-a) - f_y(a, b)(y-b) + z - f(a, b) = 0 \]

\[z = f(a, b) + f_x(a, b)(x-a) + f_y(a, b)(y-b) \]

\[\text{eqn of tangent plane to surface } z = f(xy) \text{ at } (a, b) \text{ input pt } (x, y, z) \]

or

\[z = f(a, b) + \nabla f(a, b) \cdot <x-a, y-b> \]
EX 2 For $f(x,y) = x^3y + 3xy^2$, find the equation of the tangent plane at $(a,b) = (2,-2)$.

\[
\left< f_x(a,b), f_y(a,b) \right> \cdot \left< x-a, y-b \right> = z - f(a,b)
\]

\[
\nabla f(a,b) \cdot \left< x-a, y-b \right> = z - f(a,b)
\]

\[
z = f(a,b) + \nabla f(a,b) \cdot \left< x-a, y-b \right>
\]

\[
f_x = 3x^2y + 3y^2, \quad f_y = x^3 + 6xy
\]

\[
f(a,b) = f(2,-2) = 8(-2) + 3(2)(y) = 8
\]

Tangent plane: \[
z = 8 + \left< 3(2^3)(-2) + 3(2), 2^3 + 6(2)(-2) \right> \cdot \left< x-2, y+2 \right>
\]

\[
z = 8 + \left< -12, -16 \right> \cdot \left< x-2, y+2 \right>
\]

\[
z = 8 - 12(x-2) - 16(y+2)
\]

\[
z = -12x - 16y
\]

\[
12x + 16y + z = 0
\]
Ex 3 Find the equation of the tangent "hyperplane" to \(f(x,y,z) = w \) at the point \((a,b,c)\).

\[f(x,y,z) = xyz + x^2 \quad (a,b,c) = (2,0,-3) \]

\[
w = f(a,b,c) + \nabla f(a,b,c) \cdot \langle x-a, y-b, z-c \rangle
\]

\[
f(a,b,c) = f(2,0,-3) = 4
\]

\[
f_x = yz + 2x, \quad f_y = xz, \quad f_z = xy
\]

\[
f_x(2,0,-3) = 4, \quad f_y(2,0,-3) = -6, \quad f_z(2,0,-3) = 0
\]

\[\Rightarrow \nabla f(2,0,-3) = \langle 4, -6, 0 \rangle\]

Tangent hyperplane:

\[w = 4 + \langle 4, -6, 0 \rangle \cdot \langle x-2, y, z+3 \rangle\]

\[w = 4 + 4(x-2) - 6(y) + 0(z+3)\]

\[w = 4x - 6y - w = 4\]
Ex 4 Find all domain points \((x,y)\) at which the tangent plane to the graph of \(z = x^3\) is horizontal.

\[
\begin{align*}
2 &= f(x,y) = x^3 \\
\text{tangent plane horizontal} \\
\implies \text{normal of tangent plane} \langle 0, 0, 1 \rangle \\
\text{find the tangent plane to } z = f(x,y) \text{ at } (a,b) \\
2 &= a^3 + \nabla f(a,b) \cdot \langle x-a, y-b \rangle \\
2 &= a^3 + \langle 3a^2, 0 \rangle \cdot \langle x-a, y-b \rangle \\
2 &= a^3 + 3a^2(x-a) + 0 \\
2 &= 3a^2x - 3a^3 + a^3 \\
3a^2x - 2 &= 2a^3 \\
\text{normal vector is } \langle 3a^2, 0, -1 \rangle \\
\text{force } \langle 3a^2, 0, -1 \rangle &= c \langle 0, 0, 1 \rangle \\
\implies \text{let } c = -1, \quad -1 = -1 \checkmark (z\text{-component}) \\
3a^2 &= 0 \\
\implies a &= 0 \\
\implies \text{tangent plane is horizontal whenever } x = 0 \text{ and if } x=0, \quad f(x,y) = x^3 = 0 \text{ is true.} \\
\text{at pts of surface on y-axis tangent plane is horizontal.}
\end{align*}
\]