

The moment of a particle with respect to a point is the product of mass (m) of the particle with its <u>directed</u> distance (x) from a point. This measures the tendency to produce a rotation about that point.

Where does the fulcrum need to be placed to balance?

EX 1

John and Mary, weighing 180 lbs and 110 lbs respectively, sit at opposite ends of a 12-ft teeter-totter with the fulcrum in the middle. Where should their 50-lb son sit in order for the board to balance?

For a continuous mass distribution along the line (like on a wire):

$$\overline{X} = \frac{M}{m} = \frac{\int_{a}^{b} x \, S(x) dx}{\int_{a}^{b} S(x) dx}$$
since total mass
15
$$\int_{a}^{b} S(x) dx$$

EX 2

A straight wire 7 units long has density $\delta(x) = I + x^3$ at a point x units from one end. Find the distance from this end to the center of mass.

Consider a discrete set of 2-d masses.

How do we find the center of mass (the geometric center) $(\overline{x}, \overline{y})$?

EX 3

The masses and coordinates of a system of particles are given by the following: 5, (-3,2); 6, (-2,-2); 2, (3,5); 7, (4,3); 1, (7,-1). Find the moments of this system with respect to the coordinate axes and find the center of mass.

Now, consider a continuous 2-d region (a lamina) that has constant (homogeneous) density everywhere. How do we find the center of mass $(\overline{x}, \overline{y})$?

EX 4 Find the centroid of the region bounded by $y=x^2$ and y=x+2.

Photo source: Laboratory for Atmospheric and Space Physics, University of Colorado at Boulder