The Second Fundamental Theorem of Calculus

Second Fundamental Theorem of Calculus

Let f be continuous on $[a,b]$ and F be any antiderivative of f on $[a,b]$.

Then

$$\int_{a}^{b} f(x) \, dx = F(b) - F(a)$$

EX 1

$$\int_{-1}^{2} x^4 \, dx$$

EX 2

$$\int_{\pi/6}^{\pi/2} 2 \sin t \, dt$$
Substitution Rule for Indefinite Integrals

Let g be differentiable and F be any antiderivative of f.

Then if $u = g(x)$,

$$\int f(g(x))g'(x)\,dx = \int f(u)\,du = F(u) + C = F(g(x)) + C$$

EX 3

$$\int \sqrt{x^3 + 1} \,(3x^2)\,dx$$

EX 4

$$\int_0^{\pi/2} \sin^7(3x)\cos(3x)\,dx$$

EX 5

$$\int \frac{x^2 + 1}{\sqrt{x^3 + 3x}}\,dx$$

EX 6

$$\int_{-3}^{1} \frac{1-s^4}{2s^3}\,ds$$
27 Second Fundamental Thm

\[
\int_{a}^{b} f(x) \, dx = F(b) - F(a)
\]

\[
\int_{a}^{b} f'(x) \, dx = f(b) - f(a)
\]