Solving Equations Numerically

Three numeric methods for solving an equation numerically:

① Bisection Method
② Newton's Method
③ Fixed-point Method
21 Numerical Solutions

① Bisector Method Algorithm
Let $f(x)$ be a continuous function and let a_i and b_i be numbers satisfying $a_i < b_i$ and $f(a_i) f(b_i) < 0$.
Let E denote the desired bound for the error $|r-m|$.
Repeat steps 1 to 5 for $n=1,2,...$ until $h_n < E$

1. Calculate $m_n = \frac{a_n + b_n}{2}$
2. Calculate $f(m_n)$ and if $f(m_n) = 0$ then STOP.
3. Calculate $h_n = \frac{|b_n - a_n|}{2}$ (for error testing).
4. If $f(a_n) f(m_n) < 0$, then set $a_{n+1} = a_n$ and $b_{n+1} = m_n$.
5. If $f(a_n) f(m_n) > 0$, then set $a_{n+1} = m_n$ and $b_{n+1} = b_n$.

EX 1: Approximate the real root to 2 decimal places. $f(x) = x^4 + 5x^3 + 1$ on $[-1,0]$
21 Numerical Solutions

② Newton’s Method Algorithm
Let \(f(x) \) be a differentiable function and let \(x_1 \) be an initial approximation to the root, \(r \) of \(f(x) = 0 \). Let \(E \) denote a bound for the error \(|r - x_n| \).
Repeat the following step for \(n = 1, 2, \ldots \) until \(|x_{n+1} - x_n| < E \).

\[
x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}
\]

Pros:

Cons:

EX 2 Use Newton’s method to approximate a root of \(7x^3 + 2x - 5 = 0 \) to 5 decimal places.
21 Numerical Solutions

Warning on Newton’s Method: