2.1 Rigorous Study of Limits

Definition

To say that \(\lim_{x \to c} f(x) = L \) means that for every \(\varepsilon > 0 \) (no matter how small), there exists a corresponding \(\delta > 0 \) such that \(|f(x) - L| < \varepsilon \) provided that \(0 < |x - c| < \delta \); that is, \(0 < |x - c| < \delta \Rightarrow |f(x) - L| < \varepsilon \)
2.1 Rigorous Study of Limits

EX 1 Prove that $\lim_{x \to 3} (2x-5) = 1$.

EX 2 Prove that $\lim_{x \to 0} \frac{\sin x}{x} = 1$.
EX 3 Prove that \(\lim_{x \to c} \frac{1}{x-5} = \frac{1}{c-5} \) for all \(c \neq 5 \)