Local Extrema

\[f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \]

\[\frac{d}{dx} \int_{a}^{x} f(t) \, dt = f(x) \]

\[\lim_{n \to \infty} \sum_{k=1}^{n} f(x_k) \Delta x = \int_{a}^{b} f(x) \, dx \]

\[\int_{a}^{b} f(x) \, dx = F(b) - F(a) \]
Definition

Let S be the domain of f such that c is an element of S.

Then,

1) $f(c)$ is a **local maximum** value of f if there exists an interval (a,b) containing c such that $f(c)$ is the maximum value of f on $(a,b) \cap S$.

2) $f(c)$ is a **local minimum** value of f if there exists an interval (a,b) containing c such that $f(c)$ is the minimum value of f on $(a,b) \cap S$.

3) $f(c)$ is a **local extreme value** of f if it is either a local maximum or local minimum value.
How do we find the local extrema?

First Derivative Test

Let f be continuous on an open interval (a, b) that contains a critical x-value.

1. If $f'(x) > 0$ for all x on (a, c) and $f'(x) < 0$ for all x on (c, b), then $f(c)$ is a local maximum value.
2. If $f'(x) < 0$ for all x on (a, c) and $f'(x) > 0$ for all x on (c, b), then $f(c)$ is a local maximum value.
3. If $f'(x)$ has the same sign on both sides of c, then $f(c)$ not a maximum nor a minimum value.
18B Local Extrema

EX 1 Determine local maximum and minimum points for \(y = 2x^2 - 5x + 3 \).

\[y' = \frac{4x - 5}{x} = 0 \]
\[x = \frac{5}{4} \]

\(y' \) changes from negative to positive at \(x = \frac{5}{4} \), hence a local minimum.

\[y \left(\frac{5}{4} \right) = 2 \left(\frac{5}{4} \right)^2 - 5 \left(\frac{5}{4} \right) + 3 \]
\[= \frac{25}{8} - \frac{25}{4} + 3 \]
\[= -\frac{25}{8} + 3 = \frac{1}{8} \]

Global minimum at \(\left(\frac{5}{4}, \frac{1}{8} \right) \).

EX 2 Find all local maximum and minimum points for \(f(x) = \frac{1}{2} x + \sin x \) on \([0, 2\pi]\).

\[f'(x) = \frac{1}{2} + \cos x = 0 \]
\[\cos x = -\frac{1}{2} \]
\[x = \frac{2\pi}{3}, \frac{4\pi}{3} \]

\(f''(x) \) changes from positive to negative at \(x = \frac{2\pi}{3} \), hence a local maximum.
\(f''(x) \) changes from negative to positive at \(x = \frac{4\pi}{3} \), hence a local minimum.

Test:
\[x = \frac{\pi}{6}, \quad (+) \quad (+) \]
\[x = \frac{\pi}{2}, \quad \frac{1}{2} - 1 \]
\[x = \frac{3\pi}{2}, \quad \frac{1}{2} + 0 \]

\[f \left(\frac{2\pi}{3} \right) = \frac{1}{2} \left(\frac{2\pi}{3} \right) + \sin \left(\frac{2\pi}{3} \right) = \frac{\pi}{3} + \frac{\sqrt{3}}{2} \]

\[f \left(\frac{4\pi}{3} \right) = \frac{1}{2} \left(\frac{4\pi}{3} \right) + \sin \left(\frac{4\pi}{3} \right) = \frac{2\pi}{3} - \frac{\sqrt{3}}{2} \]
Theorem: Second Derivative Test

Let f' and f'' exist at every point on the interval (a,b) containing c and $f'(c) = 0$.

1) If $f''(c) < 0$, then $f(c)$ is a local maximum.
2) If $f''(c) > 0$, the $f(c)$ is a local minimum.

EX 3 Find all critical points for $f(x) = x^3 - 3x^2 + 1$.

$$f'(x) = 3x^2 - 6x = 0$$
$$3x(x-2) = 0$$
$$x = 0, 2$$

Test:
- $x = 1$, $-\left(+\right)$
- $x = 3$, $+\left(+\right)$

$$f''(x) = 6x - 6$$
$$f''(0) = -6 < 0 \implies \text{concave down at } x = 0 \implies \text{max}$$
$$f''(2) = 12 - 6 = 6 > 0 \implies \text{concave up at } x = 2 \implies \text{min}$$

Critical Points
- $(0, 1)$ local max
- $(2, -3)$ local min

$$f(x) = x^3 - 3x^2 + 1$$
- $f(0) = 1$
- $f(2) = 8 - 4(3) + 1 = -3$$
18B Local Extrema

EX 4 Find local and global extrema for \(y = x^2 + \frac{1}{x^2} \) on \([-2, 2]\).

Note: there’s a VA at \(x=0 \) (we expect all derivatives to also be undefined at \(x=0 \))

\[
\frac{dy}{dx} = 2x + \frac{-2}{x^3} = 0
\]

\[
2x^4 - 2 = 0
\]

\[
x^4 = 1
\]

\[
x = \pm 1
\]

\[
y'' = 2 + \frac{-2(-3)}{x^4}
\]

\[
y'' = \frac{2x^4 + 6}{x^4} > 0 \text{ always}
\]

\[
y = x^2 + \frac{1}{x^2}
\]

\[
y(\pm 1) = 1 + 1 = 2
\]

\[
y(\pm 2) = 4 + \frac{1}{4} = \frac{17}{4}
\]

\[
\Rightarrow \text{no global max}
\]

(because graph goes up to \(\infty \))

\[
\text{global min pts } (\pm 1, 2)
\]
EX 5 Let f be continuous such that f' has the following graph.

Try to sketch a graph of $f(x)$ and answer these questions.

a) Where is f increasing?

b) Where is f decreasing?

c) Where is f concave up?

d) Where is f concave down?

e) Where are inflection points?

f) Where are local max/min values?

18B Local Extrema
18B Local Extrema

[Diagram showing local extrema with labels for stationary points and singular points.]