17 Monotonicity Concavity

Definition

Let *f* be defined on an interval I, (open, closed or neither), we say that:

- 1) *f* is *increasing* on I if for every x_1, x_2 in I $x_1 < x_2$ implies $f(x_1) < f(x_2)$.
- 2) *f* is <u>decreasing</u> on I if for every x_1 , x_2 in I $x_1 < x_2$ implies $f(x_1) > f(x_2)$.
- 3) f is strictly monotonic on I if it is either increasing or decreasing on I.

Monotonicity Theorem

Let *f* be continuous on the interval, I and differentiable everywhere inside I.

- 1) if f'(x) > 0 for all x on the interval, then f is increasing on that interval.
- 2) if f'(x) < 0 for all x on the interval, then f is decreasing on that interval.

17 Monotonicity Concavity

EX 1 For each function, determine where *f* is increasing and decreasing.

a) $f(x) = x^3 + 3x^2 - 12$

$$f(x) = \frac{x-1}{x^2}$$

EX 2 Where is $f(x) = \cos^2 x$ increasing and decreasing on the interval [0,2 π]?

17 Monotonicity Concavity

Definition

Let f be differentiable on an open interval, ${\rm I}$.

f is concave up on $I \ \mbox{if } f'(x)$ is increasing on I , and

f is concave down on I if f'(x) is decreasing on I.

Concavity Theorem

Let f be twice differentiable on an open interval, I.

If f''(x) > 0 for all x on the interval, then *f* is concave up on the interval.

If f''(x) < 0 for all x on the interval, then *f* is concave down on the interval.

EX 3 Determine where this function is increasing, decreasing, concave up and concave down.

$$f(x) = 4x^3 - 3x^2 - 6x + 12$$

Inflection Point

Let *f* be continuous at *c*. We call (c, f(c)) an inflection point of *f* if *f* is concave up on one side of *c* and concave down on the other side of *c*.

Inflection points will occur at x-values for which f''(x) = 0 or f''(x) is undefined.

EX 4 For this function, determine where it is increasing and decreasing, where it is concave up and down, find all max/min and inflection points. Use this information to sketch the graph.

 $f(x) = 8x^{1/3} - x^{4/3}$

