Definition

Let \(f \) be defined on an interval \(I \), (open, closed or neither), we say that:

1) \(f \) is **increasing** on \(I \) if for every \(x_1, x_2 \in I \), \(x_1 < x_2 \) implies \(f(x_1) < f(x_2) \).
2) \(f \) is **decreasing** on \(I \) if for every \(x_1, x_2 \in I \), \(x_1 < x_2 \) implies \(f(x_1) > f(x_2) \).
3) \(f \) is **strictly monotonic** on \(I \) if it is either increasing or decreasing on \(I \).

Monotonicity Theorem

Let \(f \) be continuous on the interval \(I \) and differentiable everywhere inside \(I \).

1) If \(f'(x) > 0 \) for all \(x \) on the interval, then \(f \) is increasing on that interval.
2) If \(f'(x) < 0 \) for all \(x \) on the interval, then \(f \) is decreasing on that interval.
17 Monotonicity Concavity

EX 1 For each function, determine where f is increasing and decreasing.

a) $f(x) = x^3 + 3x^2 - 12$

b) $f(x) = \frac{x-1}{x^2}$

EX 2 Where is $f(x) = \cos^3 x$ increasing and decreasing on the interval $[0, 2\pi]$?
17 Monotonicity Concavity

Definition

Let f be differentiable on an open interval, I. f is concave up on I if $f'(x)$ is increasing on I, and f is concave down on I if $f'(x)$ is decreasing on I.

![Graphs of concave up and concave down functions]

Concavity Theorem

Let f be twice differentiable on an open interval, I. If $f''(x) > 0$ for all x on the interval, then f is concave up on the interval. If $f''(x) < 0$ for all x on the interval, then f is concave down on the interval.

EX 3 Determine where this function is increasing, decreasing, concave up and concave down.

$$f(x) = 4x^4 - 3x^2 - 6x + 12$$
Inflection Point

Let \(f \) be continuous at \(c \). We call \((c, f(c))\) an inflection point of \(f \) if \(f \) is concave up on one side of \(c \) and concave down on the other side of \(c \).

Inflection points will occur at \(x \)-values for which \(f''(x) = 0 \) or \(f''(x) \) is undefined.

EX 4 For this function, determine where it is increasing and decreasing, where it is concave up and down, find all max/min and inflection points.

Use this information to sketch the graph.

\[
f(x) = 8x^{3/3} - x^{4/3}
\]