Math 1060 ~ Trigonometry

7 Graphing The Cosine and Sine Functions

Learning Objectives

In this section you will:

- Graph the cosine and sine functions.
- Learn the properties of the cosine and sine functions, including domain and range, period, phase shift, amplitude and vertical shift.
- Identify cosine and sine functions as periodic functions.
- Determine whether a periodic function is even or odd.
- Use properties to graph periodic functions.
- Write an equation from the graph of a sine or cosine function.
\[f(x) = \sin x \]

http://tube.geogebra.org/student/m45345?mobile=true
Graph of $f(x) = \sin x$

Domain: $(-\infty, \infty)$
Period: 2π

Range: $[-1, 1]$ (repeats itself in shape)
Symmetry: wrt origin. (odd fn)
\[f(x) = \cos x \]

http://tube.geogebra.org/student/m45354?mobile=true
Graph of $f(x) = \cos x$

Domain: $(-\infty, \infty)$

Range: $[-1, 1]$

Period: 2π

Symmetry: wrt y-axis (even fn)
How can you graph \(y = 2 \sin(x - \frac{\pi}{3}) + 1 \)?

This is a transformation of the basic \(y = \sin x \) curve.
It may help to remember transformations to one of the algebraic functions.

How does the graph of \(y = -3(x+2)^2 - 1 \) relate to the graph of \(y = x^2 \)?

In general, remember the effect of \(a, h \) and \(k \) on the graph of \(y = x^2 \).
\[
y = a(x-h)^2 + k
\]

| \((h,k)\) new vertex \(\begin{align*}
 h &= \text{horiz. shift} \\
 k &= \text{vert. shift}
\end{align*}\) |
| \(|a| = \text{vert. "stretch" factor} \begin{align*}
 &\text{if } |a| > 1, \text{ stretch} \\
 &\text{if } |a| < 1, \text{ shrink}
\end{align*}\) |
| \(\{ \begin{align*}
 &\text{if } a > 0, \text{ no vert. reflection (concave up)} \\
 &\text{if } a < 0, \text{ vert. reflection (concave down)}
\end{align*}\) |
\[y = A \sin(b(x-h)) + k \]

What effect do \(A, b, h \) and \(k \) have on the graph of trigonometric functions?

Let's look at it one part at a time: \(y = A \sin x \)

- **Amplitude**: \(|A| \)

 \[y = \sin x, \quad y = \cos x \]

 \[A = 1 \]

 amplitude = max distance (vertically) traveled from the horizontal axis of oscillation; it's half the distance from highest \(y \)-value to lowest \(y \)-value.

Ex 1: Graph each of these.

\[y = 3\sin x \quad A = 3 \]

\[y = -2\cos x \quad A = 2 \]

- multiplying by \(A \)

 (on the outside of the fn) causes a vertical stretch/shrink

- \(A \) is the vertical stretch by factor \(A \)

 and vertical reflection
Periodic Functions

A function is periodic if there is a real number p so that $f(x+p) = f(x)$. The smallest positive number p, if it exists is called the period of f.

\[y = \sin(bx) \]

- Period = horiz. distance before graph repeats itself.

(\text{normally for } y = \sin x \text{ and } y = \cos x \text{ period } = 2\pi)

Ex 2: Graph each of these.

\[y = \sin(2x) \]

\text{period } = \frac{2\pi}{2} = \pi

\[y = \cos(\frac{1}{2} x) \]

\text{period } = \frac{2\pi}{\frac{1}{2}} = 4\pi

amplitude = 1 \quad \text{and } (0, 0)

amplitude = 1 \quad \text{and } (0, 1)
\[y = \sin(x-h) \]

- Horizontal shift (phase shift) = \(h \)

Ex 3: Graph each of these.

\[y = \sin(x+\pi) \]

\[\text{horiz. shift} = -\pi \]

\[\text{amp.} = 1 \]
\[\text{period} = 2\pi \]

Note: This is same as \(y = -\sin x \)

\[y = \cos(x - \frac{\pi}{2}) \]

\[\text{horiz. shift} = \frac{\pi}{2} \]

\[\text{amp} = 1 \]
\[\text{period} = 2\pi \]

Note: This is same as \(y = \sin x \)

Note: \(x-h=0 \)
\[x=h \]
\[y = \sin(b(x - h)) \]

- Period = \(\frac{2\pi}{b} \)
- Horizontal shift = \(h \)

WARNING:

Must be in form \(y = \sin(b(x-h)) \) to decide horiz shift.

Ex 4: Graph each of these.

\[y = \sin(2x - \pi) \]

\[\begin{align*}
 y &= \sin(2(x - \frac{\pi}{2})) \\
 \text{Period} &= \frac{2\pi}{2} = \pi, \text{horiz. shift} = \frac{\pi}{2}
\end{align*} \]

\[\begin{align*}
 \text{amp} &= 1
\end{align*} \]

\[y = \cos\left(\frac{1}{2}x + \frac{\pi}{2}\right) \]

\[\begin{align*}
 y &= \cos\left(\frac{1}{2}(x + \pi)\right) \\
 \text{Period} &= \frac{2\pi}{\frac{1}{2}} = 4\pi, \text{horiz. shift} = -\pi
\end{align*} \]

\[\begin{align*}
 \text{amp} &= 1
\end{align*} \]
$y = \sin(x) + k$

Vertical Shift = k

Ex 5: Graph each of these.

$y = \sin x - 2$

Shift down 2

$y = \cos x + 1$

Shift up 1

amp = 1
period = 2π
So, when we graph a sine or cosine function there are these things to consider:

Ex 6: List the transformations of this function.

\[y = 3 \cos(2x - \pi) + 1 = 3 \cos \left(2 \left(x - \frac{\pi}{2} \right) \right) + 1 \]

- **Amplitude**
 \[3 \]
 \[
 \sqrt{\frac{2\pi}{2}} = \frac{\pi}{2}
 \]
- **Phase shift (horizontal)**
 \[\frac{\pi}{2} \text{ (right)} \]
- **Vertical shift**
 \[1 \text{ (up)} \]

Ex 7: List the transformations of this function. \(f(x) = -2 \sin(4x - \pi) - 2. \)

- **Amplitude**
 \[|\text{-}2| = 2 \]
- **Period**
 \[\frac{2\pi}{4} = \frac{\pi}{2} \]
- **Phase shift (horizontal)**
 \[\frac{\pi}{4} \text{ (right)} \]
- **Vertical shift**
 \[-2 \text{ (down)} \]
- **Reflection: Vertical**
Ex 8: Analyze the transformations and write a function equation of this graph using the cosine function and then one using the sine function.

1. Period: \(\frac{2\pi}{2} = \pi \)
 Amplitude: 3
 Horizontal shift: 0
 Vertical shift: 1
 \(y = 3\cos(2x) + 1 \)

2. Period = \(\pi \)
 Amp = 3
 Vertical shift = 1
 Horizontal shift = \(-\frac{\pi}{4} \)

 \[x = \frac{-\pi}{4} \implies x + \frac{\pi}{4} = 0 \]
Here are some applets in case you want to play with the transformation variables.

http://www.analyzemath.com/trigonometry/sine.htm

http://tube.geogebra.org/student/m45354?mobile=true

Here are instructions and the equation format from the text for graphing a periodic (sinusoidal) function.

For $\omega > 0$, the functions

$$C(x) = A\cos(\omega x + \phi) + B \quad \text{and} \quad S(x) = A\sin(\omega x + \phi) + B$$

- have period $\frac{2\pi}{\omega}$
- have amplitude $|A|
- have phase shift $-\frac{\phi}{\omega}$
- have vertical shift B