

4 The Six Trigonometric Functions

Learning Objectives

In this section you will:

- Determine the values of the six trigonometric functions from the coordinates of a point on the Unit Circle.
- Learn and apply the reciprocal and quotient identities.
- Learn and apply the Generalized Reference Angle Theorem.
- Find angles that satisfy trigonometric function equations.

The Trigonometric Functions

In addition to the sine and cosine functions, there are four more.

Trigonometric Functions: Suppose θ is an angle plotted in standard position and P(x, y) is the point on the terminal side of θ which lies on the Unit Circle. The circular functions are defined as follows.

- The sine of θ, denoted sin(θ), is defined by sin(θ) = y.
- The cosine of θ, denoted cos(θ), is defined by cos(θ) = x.
- The tangent of θ , denoted $\tan(\theta)$, is defined by $\tan(\theta) = \frac{y}{x}$, provided $x \neq 0$.
- The cosecant of θ , denoted $\csc(\theta)$, is defined by $\csc(\theta) = \frac{1}{y}$, provided $y \neq 0$.
- The secant of θ , denoted $\sec(\theta)$, is defined by $\sec(\theta) = \frac{1}{x}$, provided $x \neq 0$.
- The cotangent of θ , denoted $\cot(\theta)$, is defined by $\cot(\theta) = \frac{x}{y}$, provided $y \neq 0$.

Ex 2: Determine the tangent values for the first quadrant and each of the quadrant angles on this Unit Circle.

Reciprocal and Quotient Identities

	_
Reciprocal and Quotient Identities:	
• $\tan(\theta) = \frac{y}{x} = \frac{\sin(\theta)}{\cos(\theta)}$, provided $\cos(\theta) \neq 0$; if $\cos(\theta) = 0$ then $\tan(\theta)$ is undefined.	
• $\cot(\theta) = \frac{x}{y} = \frac{\cos(\theta)}{\sin(\theta)}$, provided $\sin(\theta) \neq 0$; if $\sin(\theta) = 0$ then $\cot(\theta)$ is undefined.	
• $\sec(\theta) = \frac{1}{x} = \frac{1}{\cos(\theta)}$, provided $\cos(\theta) \neq 0$; if $\cos(\theta) = 0$ then $\sec(\theta)$ is undefined.	
• $\csc(\theta) = \frac{1}{y} = \frac{1}{\sin(\theta)}$, provided $\sin(\theta) \neq 0$; if $\sin(\theta) = 0$ then $\csc(\theta)$ is undefined.	

Ex 3: Find the indicated value, if it exists.

a)
$$\sec 30^{\circ} = \frac{2}{\sqrt{3}}$$

b) $\csc \frac{11\pi}{6} = \frac{1}{-\frac{1}{2}}$
cos $30^{\circ} = \frac{\sqrt{3}}{2}$
cos $30^{\circ} = \frac{\sqrt{3}}{2}$
b) $\csc \frac{11\pi}{6} = \frac{1}{-\frac{1}{2}}$
cos $\frac{11\pi}{6} = \frac{1}{-\frac{1}{2}}$
cos $\frac{11\pi}{2} = \frac{1}{2}$
cos $\frac{11\pi}{6} = \frac{1}{-\frac{1}{2}}$
cos $\frac{11\pi}{2} = \frac{1}{2}$
cos $\frac{11\pi}{6} = \frac{1}{-\frac{1}{2}}$
cos $\frac{11\pi}{2} = \frac{1}{2}$
cos $\frac{11\pi}{2} = \frac{1}{2}$

d) $tan \theta$, where θ is any angle coterminal with 270 °.

$$\frac{2\pi0}{1(0,-1)} = \frac{1}{2} \tan(0) \text{ is undefined}}{= 2 \text{ and } \frac{3\pi}{2} < \theta < 2\pi} \text{ coterminel } \omega/770^{\circ})$$

$$e) \cos\theta, \text{ where } \csc\theta = -2 \text{ and } \frac{3\pi}{2} < \theta < 2\pi \text{ coterminel } \omega/770^{\circ})$$

$$Csc\theta = -2 \Rightarrow \sin\theta = -\frac{1}{2}$$

$$f) \sin\theta, \text{ where } \tan\theta = \sqrt{3} \text{ and } \theta \text{ is in Q III.}$$

$$fan\theta = \sqrt{3} = \frac{13}{2}$$

$$f \cos\theta = \frac{13}{2}$$

$$f \cos\theta = \frac{13}{2}$$

$$f \cos\theta = \frac{13}{2}$$

$$f \cos\theta = \frac{13}{2}$$

Generalized Reference Angle Theorem

The values of the trigonometric functions of an angle, if they exist, are the same, up to a sign, as the corresponding trigonometric functions of the reference angle.

More specifically, if α is the reference angle for θ , then $\cos \theta = \pm \cos \alpha$, $\sin \theta = \pm \sin \alpha$. The sign, + or -, is determined by the quadrant in which the terminal side of θ lies.

Ex 4: Determine the reference angle for each of these. Then state the cosine and sine and tangent of each.

Finding Angles that Satisfy Cosine and Sine Equations

Ex 5: Find all of the angles on the unit circle which satisfy the given equation.

Finding Angles that Satisfy Other Trigonometric Equations

Ex 6: Find all of the angles on the unit circle which satisfy the given equation. a) $\tan \theta = -1 \begin{pmatrix} i & Q \\ Q & Q \\ W \end{pmatrix}$ b) $\sec \theta = 2$ (i) $\cos \theta = \frac{1}{2}$ (i) $\cos \theta = 0$ (i) $\cos \theta = 0$