3.4 Vectors b November 03, 2010

Trig 3.3, 3.4 ~ Vectors

—

. Represent vectors as directed line segments.

. Perform basic vector operations and represent them graphically.
. Write vectors as a linear combination of unit vectors.

. Find the direction angles of vectors.

. Use vectors to solve real-life problems.

* . Find the dot product of two vectors.
* Find the angle between two vectors using the dot product.
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A vector is a directed line segment.

A vector has dlrectlon and magnltude independent of the position. “"\4

O O lengh Matk,

The name of a vector:

. Ax*PA ‘R R

Parts of a vector:
tip
tail
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Two vectors are the same if th% have the same direction and the same magnitude

independent of position. y
-
-
/{, a =b

Opposite vectors have the same magnitude and opposite directions.

Select the two equivalent vectors:

Select the two opposite vectors:
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For vectorv
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= ||v|| represents the magnitude or length of the vector.

O represents the direction angle of the vector. n'\','
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In General:

[Iv]] The magnitude of a vector is found using the Pythagorean Theorem on the
coordinates of the endpoints of the vector.

9 The direction angle is found with trigonometry by using arctan to find the
reference angle, then placing the angle in the correct quadrant.
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We will consider vectors in three forms:
1. Described by the coordinates of the tail and the tip.

v = ATB: where A has coordinates (-3,-2) and B has (1,5).

2. Ingtandard position, placing the tail on the origin and stating the coordinates of the tip.

vis ( q’ ? ) instandard position.

3. Describing the magnitude and direction of the vector.

v= |v|| {cos@, sinf)) where is the angle of the vector in standard position.
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u= (3,2 v= (2,1)
Vector arithmetic: (3,2 (

A vector may be multiplied by a scalar.
P

0-3L32> =<9 LS 7 30 |
2v= _z <_.2) |> nok—'

v Sta
\$'i:; =<H, w2 ot B

Two vectors may be added by adding their components. '\M\%
v HRD LY =B 24T
=<3
3,20 22,17
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Vector arithmetic is easier to visualize geometrically:

When adding two vectors, place them tail to tip. The resultant is the vector from the tail
of the first to the tip of the last.

u= €32 v= {(2,1)

3u= 3<%, = <‘l' ‘°>

2v=

B3
........................... iwh {32
=3l

13 n-zvi\ =[[z#l = -] (9]

=2 |lv“
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The unit vectors, i and j give us one more way to express our vectors.
unit vector = & vector L/ engin of |
gl =1

notakon. U
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Vectors: The dot product. (M ?fOMC"' 3( 2 vels = Scala&

The dot product of two vectors provides a formula which will help find the angle between
two vectors.
@ = u V + ui T
u-ve= |lu\\ Vil ceso

(e M3|< betuten U W
So given vectors u= {3,-2) andv= (-4,1)

Find the dot product: a . v = <3,"2> - ("", l>

. S S --N =0 w2

The cosine of the angle between the two vectors is the dot product
divided by the product of the magnitudes of the two vectors.

¥ coso = IIUII IIVII (ﬂ"‘—y m»g"
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Find the angle between the two vectors above: |4 = <3, '27
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Orthogonal vectors: If two vectors are perpendicular to each other they are said
to be orthogonal. What would the cosine of two orthogonal vectors be?

‘W &L 1l oo
& cos©= 0O u-V-o

=4-v-0 |&

N U+v anc
rthogonal or not? ! :
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Application problem 1: - flying an airplane.

A plane is flying N 30° E at 400 mph and the wind is blowing west at 40 mph.
What is the effective direction and speed of the plane?

©
Ny 6=t0 |3l yoo
CJ

P ©=1® |3 \=4o
( Draw a picturé.* _-F: - "F“ < Cos 0’ S°m S.7

Place your vectors for proper addition. < Yoo <¢g§ Lb.) Si«(,b')

= Yool Vo, 3L
Remember the resultant is from the tail of the first to the tip of the second. < <2 o0 ) : DJI )
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of the velocity of the
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plane is 381.58 mph.

\I % +Q \\ The direction is N 25° E.
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Application problem 2 forces acting on an object:

Two forces are pushing on an object, one exerts 30 Ibs of pressure and a second exerts
20 Ibs of pressure. The angle between the two forces is 70°. What is the resultant force
on the object?

noke fortn ™= rtsu hing
30 s =magnitude of Yhad e ctor o e vecty,

> flay Wt (=7

17|=%0 +20"
~2(30)(@es I

\H=\) 30 +20— 2 asiic”

20

When computed on a
calculator he resultant is
41.36 Ib.
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Application 3: Using a ramp to lift heavy objects.

A 500-Ib rock is being wheeled up a 30 degree ramp. What force
is necessary to keep it from rolling back down the ramp? What is

the weight the ramp is actually supportilg? w L b
ok IFl=<o0  ramp
Soo Pw
(abwads ght ol obiect
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N3 ll= 25043 2bs =433 Jbs
NQl|= 250 Abs




