Math 1050 ~ College Algebra

1 Introduction to Functions

Learning Objectives

- Determine whether a relation represents a function.
- Use the vertical line test to identify graphs of functions.
- Find the domain and range from the graph of a function.
- Find input and output values of a function.
- Find the domain from the equation of a function.
A **relation** is a set of ordered pairs. The set of first components of the ordered pairs is called the **domain** and the set of second components of the ordered pairs is called the **range**.

- Input value $\|\$ independent variable
- Output value $\|\$ dependent variable

(\text{depends on input})

Ex1: For each of these, state whether it is a relation, and if it is, list the elements in the domain and in the range.

a) $\{(1,5), (5,-2), (5,4), (3,2)\}$

- **Yes, it's a relation.**
- $D:\{1,5,3\}$ $R:\{5,-2,4,2\}$

b) Bud 15
 May 16
 Ezi 17
 Zhu 18
 Tia 19

d) Input values: days of the week
 Output values: final letter in word

- **D**: \{Sunday, Monday, Tuesday, Wed., Thurs., Fri., Sat.\}
- **R**: \{y\}

e) \{name, rank, serial number\}

not a relation
A **function** is a relation in which any two ordered pairs with the same first component also have the same second component.

A function has only one output for any given input (fn means function)

Ex 2: From example 1, which of the relations are functions?

a) \{(1,5), (5,-2), (5,4), (3,2)\}

not a fn, because input 5 has 2 outputs

b) Bud 15
May 16
Ezi 17
Zhu 18
Tia 19

yes, is a fn because every input has only one output

c) ![Graph](image)

Yes, it’s a fn because every input has only one output

d) Input values: days of the week
Output values: final letter in word

ex (Tuesday, y) (Wed, y)

Yes, a fn.
An equation in two variables can be a relation as can a 2-dimensional graph.

Ex 3: Which of these are functions?

a) \(x + 3 = y^2 \)
 \[y = \pm \sqrt{x+3} \]
 \(\Rightarrow \) there are 2 outputs for most inputs \(\Rightarrow \) it is not a fn.

b) \(2y = \sqrt{x-1} \)
 \[y = \frac{1}{2} \sqrt{x-1} \]
 \(\Rightarrow \) for every \(x \)-value, we get back one \(y \)-value \(\Rightarrow \) is a fn

c) \(x^2 + y^2 = 9 \)
 \(\Rightarrow \) if \(x = \sqrt{5} \), then \(x^2 = 5 \)
 \(5 + y^2 = 9 \) \(\iff \) \(y^2 = 4 \) \(\iff \) \(y = \pm 2 \)

So one particular \(x \)-value yielded two \(y \)-values \(\Rightarrow \) is not a fn

d) \(\{(3,1), (2,1), (5,1), (6,2)\} \)
 every input has only one output \(\Rightarrow \) this is a fn
The Vertical Line Test: A graph represents a function if no vertical line intersects it at more than one point.

Ex 4: Use the vertical line test to determine if these relations are functions.

\[R_1 = \{(1,5), (5,-2), (5,4), (3,2)\} \quad R_2 = \{(3,1), (2,1), (5,1), (-3,2)\} \]
Function Notation

\[f \text{ is a fn that takes an input } (x) \text{ and maps it to an output } (y). \]
\[y = f(x) \quad \text{(read } f \text{ of } x\text{)} \]

Ex 5: Evaluate these functions for the given values.

a) \(f(x) = \sqrt{x+8} + 2 \)

\[f(-8) = \sqrt{-8+8} + 2 = 0 + 2 = 2 \]
\[f(x-8) = \sqrt{(x-8)+8} + 2 = \sqrt{x} + 2 \]
\[f(a) = \sqrt{a+8} + 2 \]

b) \(g(2) = -3 \)

\(g(0) = \) undefined

\(g(a) = -2 \) for \(a = 3 \)

Output = -2, input?
Domain of Functions

The domain of a function is the set of all input values for which the function is defined.

Implicit domain
(domain that's implied by computations needed in the function)

Explicit domain
handed to you

Ex 6: Determine the domain for each of these functions and identify as implicit or explicit.

a) \(f(x) = \sqrt[3]{x + 4} \)

 D: \(x \in \mathbb{R} \)

 note: we can take cube root of any number

b) \(p(x) \)

 D: \(x > 1 \)

 (or \(x \in (1, \infty) \))

(c) \(q(x) = \frac{3}{x^2 - 2x} \)

 D: \(x \in \mathbb{R} \), \(x \neq 0 \), \(x \neq 2 \)

 (because those \(x \)-values make denominator \(0 \))

 \((-\infty, 0) \cup (0, 2) \cup (2, \infty) \)

 (implicit)

(d) \(f(x) = \frac{\sqrt{x+4}}{4+x} \)

 \(x+4 \geq 0 \)

 \(x \geq -4 \)

 D: \(x > -4 \)

 (or \(x \in (-4, \infty) \))

(e) \(h(x) = 5x - 3 \), \(x > -1 \)

 D: \(x > -1 \)

 (or \(x \in (-1, \infty) \))

(Explicit)