CHAPTER 9: SEQUENCES AND SERIES 9.1 Sequences and Series In section 9.1 you will learn to: • Use sequence notation to write the terms of a sequence. • Use factorial notation. • Use summation notation to write sums. • Find the sums of infinite series. • Use sequences and series to model and solve real-life problems.

What is a sequence?	
Finite: 1, 2, 4, 8	
Infinite: 1, 3, 5, 7,, 2n-1,	
A sequence is a function with the domain a subset of the natural numbers.	

Example 1:
a) Write the first four terms of this sequence: $a_n = n^2 + 1$
b) Write the first four terms of this sequence: $b_n = (-1)^{n+1}(10n + 3)$

Example 2: Find a formula for the n^{th} term in each of these sequences, then use the formula to find the 10^{th} term.

a) 2, 4, 6, 8, 10, ...

b) 3, -6, 12, -24, ...

Some sequences are defined *recursively*. One or more initial terms are given and subsequent terms are defined using the previous terms.

Example 3:

 $a_1 = 2$ $a_n = 3a_{n-1} + 1$ for each n > 1

What are the first four terms?

Example 4: The Fibonacci Sequence $a_1 = 1$ $a_2 = 1$ $a_k = a_{k-1} + a_{k-2}$ List five terms:

sequences1.pdf

A **series** is the sum of the terms in a sequence. The sum of the first *n* terms of a sequence is the n^{th} partial sum S_n .

The 5th partial sum of the sequence of odd numbers is $S_5 =$

For an arbitrary sequence $a_1, a_2, a_3, \dots, a_{100}$, the corresponding series is

$$a_1 + a_2 + a_3 + \dots + a_{100}$$

We abbreviate this sum using the Greek letter Σ (sigma):

$$\sum_{i=1}^{100} a_i = a_1^{+} a_2^{+} a_3^{+} \dots^{+} a_{100}^{-}.$$

The subscript i=1 and superscript 100 written above and below sign indicate which terms begin and end the series. The index i is not unique, but is sometimes replaced using j, k, etc.

Express $3^2 + 4^2 + 5^2 + 6^2$ using the sigma.

Example 8:

You're a clever student. You've decided to save your money for a trip to Europe, but it will be expensive. You've decided to open a savings account today with \$1. You plan to add more each day, 7 days a week, by depositing one more dollar each day than you did the previous day. Use summation notation to express the total amount you will have contributed at the end of one year: