CHAPTER 9: SEQUENCES AND SERIES

9.1 Sequences and Series

In section 9.1 you will learn to:

- Use sequence notation to write the terms of a sequence.
- Use factorial notation.
- Use summation notation to write sums.
- Find the sums of infinite series.
- Use sequences and series to model and solve real-life problems.

\[
\frac{1}{4!} \quad \sum_{k=2}^{8} \frac{1}{k^2} \quad \sum_{i=1}^{5} 2i
\]
What is a sequence?

Finite: 1, 2, 4, 8

\[a_1, a_2, a_3, \ldots \]

Infinite: 1, 3, 5, 7, ..., 2n-1, ...

\[a_n = 2n-1 \]

\(n=1 \rightarrow a_1 = 2(1)-1 = 1 \)

\(n=2 \rightarrow a_2 = 2(2)-1 = 3 \)

A sequence is a function with the domain a subset of the natural numbers.
Example 1:

a) Write the first four terms of this sequence: \(a_n = n^2 + 1 \)

\[
\begin{align*}
 a_1 &= 1^2 + 1 = 2 \\
 a_2 &= 2^2 + 1 = 5 \\
 a_3 &= 3^2 + 1 = 10 \\
 a_4 &= 17
\end{align*}
\]

b) Write the first four terms of this sequence: \(b_n = (-1)^{n+1}(10n + 3) \)

\[
\begin{align*}
 b_1 &= (-1)^2(10+3) = 13 \\
 b_2 &= (-1)^3(10\cdot2+3) = -23 \\
 b_3 &= 33 \\
 b_4 &= -43
\end{align*}
\]
Example 2: Find a formula for the \(n \)th term in each of these sequences, then use the formula to find the 10th term.

a) 2, 4, 6, 8, 10, ...

\[
a_n = 2n
\]

\[
a_{10} = 2(10) = 20
\]

b) 3, -6, 12, -24, ...

\[
b_n = (-1)^n \cdot (3 \cdot 2^{n-1})
\]

\[
b_{10} = (-1)^{10} \cdot (3 \cdot 2^9) = (1) \cdot (3 \cdot 2^9)
\]
Some sequences are defined **recursively**. One or more initial terms are given and subsequent terms are defined using the previous terms.

Example 3:

\[a_1 = 2 \]
\[a_n = 3a_{n-1} + 1 \text{ for each } n > 1 \]

What are the first four terms?

\[a_1, a_2, a_3, a_4, \ldots \]
\[2, 7, 22, 67 \]

\[a_1 = 2 \]
\[a_2 = 3(2) + 1 = 7 \]
\[a_3 = 3(7) + 1 = 22 \]
\[a_4 = 3(22) + 1 = 67 \]
Example 4:

The **Fibonacci Sequence**

\[
\begin{align*}
a_1 &= 1 & \checkmark \\
a_2 &= 1 & \checkmark \\
a_n &= a_{n-1} + a_{n-2} & \checkmark \\
\end{align*}
\]

\[a_3 = a_1 + a_2 = 1 + 1 = 2\]

List five terms:

\[a_1, a_2, a_3, a_4, a_5\]

\[1, 1, 2, 3, 5, 8\]
Factorials are often used in sequence definitions.

We define \(n \) factorial (written \(n! \)) to be:

\[
 n! = 1 \cdot 2 \cdot 3 \cdot \ldots \cdot (n-1) \cdot n
\]

\[
 4! = \frac{1 \cdot 2 \cdot 3 \cdot 4}{1 \cdot 2 \cdot 3 \cdot 4} = 24
\]

0! is defined to be 0! = 1

Example 5:

Evaluate these expressions:

a) \[
 \frac{8!}{2! \cdot 6!} = \frac{8 \cdot 7 \cdot 6 \cdot 5}{2 \cdot 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6} = \frac{3 \cdot 2}{2} = 3
\]

b) \[
 \frac{(n+1)!}{(n-1)!} = \frac{(n+1) \cdot (n) \cdot (n-1) \cdot \ldots \cdot 2 \cdot 1}{(n-1) \cdot \ldots \cdot 2 \cdot 1} = \frac{n \cdot (n+1)}{1} = n^2 + n
\]

It is often convenient to recognize the factorials of the first five or six natural numbers.

\[
 1! = 1 \quad 5! = 120
\]

\[
 2! = 2 \quad 6! = 720
\]

\[
 3! = 6
\]

\[
 4! = 24
\]
Example 6:

Write the first four terms of these sequences:

a) \(a_n = \frac{1}{n!} \)

\[
\begin{align*}
 a_1 &= \frac{1}{1!} = 1 \\
 a_2 &= \frac{1}{2!} = \frac{1}{2} \\
 a_3 &= \frac{1}{3!} = \frac{1}{6} \\
 a_4 &= \frac{1}{4!} = \frac{1}{24} \\
\end{align*}
\]

b) \(b_n = \frac{n}{(n+2)!} \)

\[
\begin{align*}
 b_1 &= \frac{1}{3!} = \frac{1}{6} \\
 b_2 &= \frac{2}{4!} = \frac{2}{24} \\
 b_3 &= \frac{3}{5!} = \frac{3}{120} \\
 b_4 &= \frac{4}{6!} = \frac{4}{720} \\
\end{align*}
\]
A **series** is the sum of the terms in a sequence. The sum of the first \(n \) terms of a sequence is the \(n^{th} \) **partial sum** \(S_n \).

The 5\(^{th} \) partial sum of the sequence of odd numbers is \(S_5 = 1 + 3 + 5 + 7 + 9 = 25 \).

For an arbitrary sequence \(a_1, a_2, a_3, \ldots, a_{100} \), the corresponding series is

\[a_1 + a_2 + a_3 + \ldots + a_{100}. \]

We abbreviate this sum using the Greek letter \(\Sigma \) (sigma):

\[\sum_{i=1}^{100} a_i = a_1 + a_2 + a_3 + \ldots + a_{100}. \]

The subscript \(i=1 \) and superscript 100 written above and below sign indicate which terms begin and end the series. The index \(i \) is not unique, but is sometimes replaced using \(j, k, \) etc.

Express \(3^2 + 4^2 + 5^2 + 6^2 \) using the sigma.

\[S = \sum_{j=3}^{6} j^2 \]
Example 7:

Find the sum of these series by adding the terms:

a) \(\sum_{j=1}^{5} (1+3j) \)
\(a_j = 1 + 3j \)
\(j = 1 \rightarrow j = 5 \)
\(4 + 7 + 10 + 13 + 16 = 50 \)

b) \(\sum_{k=0}^{2} \frac{(-1)^k}{2k} \)
\(\frac{1}{1} \rightarrow k \)
\(\frac{1}{2} \rightarrow k \)
\(\frac{1}{4} \rightarrow k \)
\(\frac{1}{8} \rightarrow k \)
\(\frac{1}{16} \rightarrow k \)
\(\frac{1}{32} \rightarrow k \)
\(1 - \frac{1}{2} - \frac{1}{4} = \frac{3}{4} \)

Use summation notation to abbreviate this series:

\[\sum_{i=1}^{99} \frac{1}{i(i+1)} \]
Example 8:

You’re a clever student. You’ve decided to save your money for a trip to Europe, but it will be expensive. You’ve decided to open a savings account today with $1. You plan to add more each day, 7 days a week, by depositing one more dollar each day than you did the previous day. Use summation notation to express the total amount you will have contributed at the end of one year:

\[
1 + 2 + 3 + 4 + \cdots + 365 = \\
\sum_{j=1}^{365} j
\]