3.3 Properties of Logarithms

Properties of Logarithms

In section 3.3 you will learn to:

• Use properties to evaluate or rewrite logarithmic expressions.
• Use properties of logarithms to expand or condense logarithmic expressions.
• Use the change of base formula to rewrite and evaluate logarithmic expressions.
• Use logarithmic functions to model and solve real-life problems.
Properties of Logarithms

Your calculator has only two keys that compute logarithmic values.

\[\log x \text{ means } \log_{10} x \]

\[\ln x \text{ means } \log_e x \]

Suppose you need to compute a logarithm in some other base, \(a \)

\[\log_a x = y \]

\[a^y = x \]

\[\log (a^y) = \log x \]

\[y \log a = \log x \]

\[y = \frac{\log x}{\log a} = -\log_a x \]

Change of base formula:

\[\log_a x = \frac{\log_b x}{\log_b a} \]

Examples:

a) \(\log_2 254 = \frac{\log 254}{\log 2} \approx 7.989 \)

b) \(\log_6 0.008 = \frac{\ln 0.008}{\ln 6} \approx -2.695 \)

\[\log_6 0.008 = \frac{\log 0.008}{\log 6} \approx -2.695 \]
3.3 Properties of Logarithms

Since a logarithm is an exponent, the properties of logarithms are just like the properties of exponents.

<table>
<thead>
<tr>
<th>Exponents</th>
<th>Logarithms</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a^0 = 1$</td>
<td>$\log_a 1 = 0$</td>
</tr>
<tr>
<td>$a^1 = a$</td>
<td>$\log_a a = 1$</td>
</tr>
<tr>
<td>Product:</td>
<td>[\log_a (uv) = \log_a u + \log_a v]</td>
</tr>
<tr>
<td>[a^m \cdot a^n = a^{m+n}]</td>
<td>[\log_a \frac{u}{v} = \log_a u - \log_a v]</td>
</tr>
<tr>
<td>Quotient:</td>
<td>[\log_a u^n = n \log_a u]</td>
</tr>
<tr>
<td>[\frac{a^m}{a^n} = a^{m-n}]</td>
<td></td>
</tr>
<tr>
<td>Power:</td>
<td></td>
</tr>
<tr>
<td>[(a^m)^n = a^{mn}]</td>
<td></td>
</tr>
<tr>
<td>Inverse properties:</td>
<td>[\log_a (a^x) = x]</td>
</tr>
<tr>
<td>One-to-one properties:</td>
<td>[\log_a x = \log_a y \implies x = y]</td>
</tr>
</tbody>
</table>
Let's apply the properties of logarithms.

a) \(\log_4 5 + \log_4 6 = \log_4 30 \)

b) \(\log (12a) - \log (2a) = \log \left(\frac{12a}{2a} \right) = \log 6 \)

c) \(\log_4 x^4 = 4 \log_4 x = \log_4 x \)

d) \(e^{\ln(5x)} = 5x \)

e) \(\log_{10} (x^2) = \frac{\log_{10} x^2}{\log_{10} 10} = x^2 \)
In solving equations, it will be helpful to expand and condense logarithmic expressions.

Expand these:

a) \(\log_4 5x^3y = \log_4 5 + \log_4 (x^3) + \log_4 y = \)

\[= \log_4 5 + 3 \log_4 x + \log_4 y \]

b) \(\ln \frac{\sqrt{3x-5}}{7} = \ln \sqrt{3x-5} - \ln 7 = \)

\[= \frac{1}{2} \ln (3x-5) - \ln 7 \]

c) \(\log \left(\frac{b^3}{1+a^2} \right)^5 = 5 \log \left(\frac{b^3}{1+a^2} \right) = \)

\[= 5 \left[3 \log b - \log (1+a^2) \right] \]
Condense these into a single logarithmic expression:

a) \(\frac{1}{2} \log x + 3 \log (x+1) = \log \left(\sqrt{x} (x+1)^3 \right) = \log \left(\frac{\sqrt{x}}{x+1} \right) \)

b) \(2 \ln (x+2) - \ln x = \ln \left(\frac{(x+2)^2}{x} \right) \)
Suppose we know that \(\log_b 2 = 0.41 \) and \(\log_b 3 = 0.54 \), use the properties of logarithms to find:

a) \(\log_b 6 = \log_b (2 \cdot 3) = \log_b 2 + \log_b 3 = 0.41 + 0.54 = 0.95 \)

b) \(\log_b 2/9 = \log_b \sqrt[3]{3} = \frac{1}{3} \log_b 3 = \frac{1}{3} \cdot 0.54 = 0.18 \)

\(\log_b 2 - \log_b 9 = \log_b 2 - 2 \log_b 3 = 0.41 - 0.94 = -0.53 \)
Logarithms are useful in reporting a broad range of data by converting it into a more manageable form. Consider the intensity of earthquakes.

Let \(I_0 = \) the intensity of a "standard" earthquake that is agreed upon as minimal (barely detectable.)

Let \(I = \) The intensity of a much larger earthquake.

The magnitude \(M \) of the latter quake \(I \) relative to \(I_0 \) is defined by

\[
M = \log \frac{I}{I_0}
\]

You may have heard of the Richter scale that measures the intensity of an earthquake.

What is the magnitude \(M \) of an earthquake measured to be 10,000 times more intense than a standard quake?

\[
M = \log \frac{10,000 \times I_0}{I_0} = \log 10,000 = 4.0
\]
Example:

On October 17, 1989 a major earthquake struck the San Francisco Bay area only minutes before Game 3 of the World Series in Candlestick Park. Its intensity was measured as 7.1 on the Richter scale.

How many times more intense was it than a minimal quake?

a) 12,500 times more intense?

b) 1,250,000 time more intense?

c) 12,500,000 times more intense?

\[
M = \log \frac{I}{I_0}
\]

\[
7.1 = \log \frac{I}{I_0}
\]

\[
10^{7.1} = \frac{I}{I_0}
\]

\[
I = 10^{7.1} (I_0) = 12,500,000 I_0
\]