Graphing and analyzing functions
Intercepts, zeros

• \((0,a)\) is called y-intercept of \(f\) if \(f(0) = a\). Find y-intercept of \(g(x) = \sqrt{4-x}\)

\[
g(0) = \sqrt{4-0} = \sqrt{4} = 2
\]

\((0, 2)\)

• \((a,0)\) is called x-intercept of \(f\) if \(f(a) = 0\). In this case, \(a\) is also called a zero of the function \(f\).

Find x-intercept of \(g(x) = \sqrt{4-x}\)

\[
\sqrt{4-x} = 0
\]

\[
4-x = 0
\]

\(x = 4\)

\((4, 0)\)
Find x and y intercepts

\[h(x) = |x - 2| - 2 \]

x-intercept: \(h(x) = 0 \)

1) \(|x - 2| - 2 = 0 \)
 \[|x - 2| = 2 \]
 1) \(x - 2 = 2 \) \(/+2 \) \(x = 4 \)
 2) \(x - 2 = -2 \) \(/+2 \) \(x = 0 \)

\((4, 0) \) \((0, 0) \) \(y \)-int.

y-intercept: \(h(0) = |0 - 2| - 2 \)
 \[= |2| - 2 = 2 - 2 = 0 \]
Increasing and decreasing functions

- A function f is **increasing** on an interval if for any two points a and b in the interval for which $a < b$ we have that $f(a) < f(b)$.

- A function f is **decreasing** on an interval if for any two points a and b in the interval for which $a < b$ we have that $f(a) < f(b)$.
Minimum and maximum

• We say that the function f has a **relative (local) minimum** at a point a if $f(a) \leq f(x)$ for all x in some open interval around a.
• We say that the function f has an **absolute (global) minimum** at a point a if $f(a) \leq f(x)$ for all x in the domain.
• We say that the function f has a **relative (local) maximum** at a point a if $f(x) \leq f(a)$ for all x in some open interval around a.
• We say that the function f has an **absolute (global) maximum** at a point a if $f(x) \leq f(a)$ for all x in the domain.
How are these different?

<table>
<thead>
<tr>
<th>x</th>
<th>f(x)</th>
<th>h(x)</th>
<th>g(x)</th>
<th>k(x)</th>
<th>l(x)</th>
<th>m(x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-5</td>
<td>25</td>
<td>22</td>
<td>28</td>
<td>64</td>
<td>4</td>
<td>-25</td>
</tr>
<tr>
<td>-4</td>
<td>16</td>
<td>13</td>
<td>19</td>
<td>49</td>
<td>1</td>
<td>-16</td>
</tr>
<tr>
<td>-3</td>
<td>9</td>
<td>6</td>
<td>12</td>
<td>36</td>
<td>0</td>
<td>-9</td>
</tr>
<tr>
<td>-2</td>
<td>4</td>
<td>1</td>
<td>7</td>
<td>25</td>
<td>1</td>
<td>-4</td>
</tr>
<tr>
<td>-1</td>
<td>1</td>
<td>-2</td>
<td>4</td>
<td>16</td>
<td>4</td>
<td>-1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>-3</td>
<td>3</td>
<td>9</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>-2</td>
<td>4</td>
<td>4</td>
<td>16</td>
<td>-1</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>1</td>
<td>7</td>
<td>1</td>
<td>25</td>
<td>-4</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td>6</td>
<td>12</td>
<td>0</td>
<td>36</td>
<td>-9</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>13</td>
<td>19</td>
<td>1</td>
<td>49</td>
<td>-16</td>
</tr>
</tbody>
</table>

http://www.coolmath.com/graphit

http://www.geogebra.org
\[f(x) = x^2 \]
\[h(x) = x^2 - 3 = f(x) - 3 \]
\[g(x) = x^2 + 3 = f(x) + 3 \]
\[k(x) = (x-3)^2 = f(x-3) \]
\[l(x) = (x+3)^2 = f(x+3) \]
\[m(x) = -(x^2) = -f(x) \]

\[k(3) = f(0) \]
Graph transformations

- If c is any positive number and $f(x)$ any function then:

 - The graph of $h(x)=f(x)+c$ is that of f shifted c units upward
 - The graph of $g(x)=f(x)-c$ is that of f shifted c units downward
 - The graph of $k(x)=f(x-c)$ is that of f shifted c units to the right
 - The graph of $l(x)=f(x+c)$ is that of f shifted c units to the left
 - The graph of $m(x)=-f(x)$ is that of f reflected along x-axis.
Non-rigid transformations

\[f(x) = x^2 \]
\[h(x) = 3x^2 - 2 \]
\[g(x) = 3(x^2 - 2) \]
\[k(x) = 3(x - 2)^2 \]

\[h(x) = 3f(x) - 2 \]
\[g(x) = 3 \left(f(x) - 2 \right) = 3f(x) - 6 \]
\[k(x) = 3f(x - 2) \]

<table>
<thead>
<tr>
<th>(x)</th>
<th>(f(x))</th>
<th>(h(x))</th>
<th>(g(x))</th>
<th>(k(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>-5</td>
<td>25</td>
<td>73</td>
<td>69</td>
<td></td>
</tr>
<tr>
<td>-4</td>
<td>16</td>
<td>46</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>-3</td>
<td>9</td>
<td>25</td>
<td>21</td>
<td>75</td>
</tr>
<tr>
<td>-2</td>
<td>4</td>
<td>10</td>
<td>6</td>
<td>48</td>
</tr>
<tr>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>-3</td>
<td>27</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>-2</td>
<td>-6</td>
<td>12</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-3</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>10</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td>25</td>
<td>21</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>46</td>
<td>42</td>
<td>12</td>
</tr>
</tbody>
</table>
\[f(x) = x^2 \]
\[h(x) = 3x^2 - 2 \]
\[g(x) = 3(x^2 - 2) \]
\[k(x) = 3(x - 2)^2 \]
Graph \[f(x) = (x - 1)^2 \]
Library of parent functions

- Linear \(f(x) = ax + b \)
- Constant \(f(x) = c \)
- Identity \(f(x) = x \)
- Quadratic \(f(x) = x^2 \)
- Square root \(f(x) = \sqrt{x} \)
- Cubic \(f(x) = x^3 \)
- Absolute value \(f(x) = |x| \)
- Reciprocal \(f(x) = 1/x \)

Draw graphs of each of these functions using symmetries, intercepts, and table of values you learned. Then check your solutions using one of the graphing tools.