Today's lesson and objectives

Functions

- Identify relations between two variables and determine if they are functions
- Use function notation and evaluate functions
- Determine the domain of a function
- Model problems with functions
Functions

• A function f from set A to set B is a rule that to each element (INDEPENDENT) of the set A assigns EXACTLY one element of the set B (DEPENDENT).

• Set A is called the domain of f, while B is called the range of f.
Different ways to describe a function

- Verbally – sentence describing how the dependent and independent variable are related

- Numerically – using a table or list of ordered pairs

- Graphically – drawing all the ordered pairs on a coordinate system (the independent variable corresponds to the horizontal axis, and dependent to vertical)

- Algebraically – writing an expression that describes how one variable depends on the other
Are these functions? Find the domains and ranges.

- There are 120 students in the class M1050.
- To each student in the class M1050 we associate their grade on the final exam.

 Domain:
 Range:
 Function: yes no

- To each score 1 to 100 we associate a student with that score.

 Domain:
 Range:
 Function: yes no
Are these functions? Find the domains and ranges.

- \{(1,2), (1,3),(2,4),(2,5),(3,6),(3,7)\}

 Domain:
 Range:
 Function: yes yes

- \{(2,8),(3,7), (4,6),(5,7),(6,8)\}

 Domain:
 Range:
 Function: yes yes
Is this a function? Find the domain and range.

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>13</td>
</tr>
<tr>
<td>2</td>
<td>21</td>
</tr>
<tr>
<td>3</td>
<td>17</td>
</tr>
<tr>
<td>3</td>
<td>17</td>
</tr>
<tr>
<td>4</td>
<td>12</td>
</tr>
<tr>
<td>5</td>
<td>15</td>
</tr>
</tbody>
</table>
Is this a function? Find the domain and range.

• Is \(y \) a function of \(x \) if we have \(3x + 5y = 2 \)

• Question: “Do we have only one \(y \) for each \(x \)?

To find that out we should express \(y \) in terms of \(x \), and see if we get a unique (only one) value of \(y \) for each individual \(x \):
Is this a function? Find the domain and range.

• Is x a function of y? We have $3x + 5y = 2$

• Question: “Do we have only one x for each y?”

To find that out we should express x in terms of y, and see if we get a unique (only one) value of x for each individual y:
Function notation and evaluating functions

\[g(x) = 2x + 4 \]

<table>
<thead>
<tr>
<th>Evaluate function (g) at 2, 4, -3, 1/2</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Piecewise defined functions

\[f(x) = \begin{cases}
 x^2 - 1, & x \leq 3 \\
 x + 3, & x > 3
\end{cases} \]

- Evaluate \(f \) at 6, -12 and 0
- Draw a table of values for \(x \in [-1, 5] \)
\[f(x) = \begin{cases} x^2 - 1, & x \leq 3 \\ \end{cases} \]

<table>
<thead>
<tr>
<th>x</th>
<th>f(x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>
Find the domains of the following functions

\[g(x) = \sqrt{1 - 2x} \]
Find the domains of the following functions

\[h(s) = \frac{s(s + 3)}{(s - 2)(s + 4)} \]
Find the domains of the following functions

\[h(x) = \sqrt[3]{1 - 2x} \]
Graph of a function f is the set of all points $(x, f(x))$ in the coordinate plane.

- Graph $f(x) = 2x - 1$
What can the graph tell us?

• Can I read the value of a function at a given point?

• If I know the value of the function, can I find its origin (the value of independent variable this value corresponds to)?

• Can I read the domain and range?
What can the graph tell us?

\[f(1) = \]
\[f(0) = \]
\[f(-1) = \]

For what \(x \) is
\[f(x) = 6 \]
\[f(x) = -4 \]
\[f(x) = 4 \]
Is this a function? Find its domain and range
Vertical line test

- A curve in the plane is a graph of a function of x only if every vertical line intersects that curve in at most one point.
Review

- Let the function f be defined by $f(x) = \frac{1}{\sqrt{1-x^2}}$

- Indicate whether the following statements are true or false:

 1. $f(x)$ is never positive.
 2. $f(x)$ is never zero.
 3. 0 is in the domain of f
 4. All negative real numbers are in the domain of f
 5. All positive real numbers are in the domain of f
 6. 1 is in the domain of f
 7. f is never negative.

http://matti.usu.edu/grapher/