REVIEW

SCIENTIFIC NOTATION
Scientific Notation is a format in which a number is expressed as a number between 1 and 10 multiplied by a power of 10.

EX 1: Put each of these in scientific notation.

a) 3052
 b) 0.08923

 c) 0.000032
 d) 1948.35

EX 2: Write in decimal notation.

a) 5.7×10^{-3}
 b) 7.55×10^6

 c) 8×10^2
 d) 0.3×10^{-4}
Multiply/Divide with scientific notation

Multiply or divide the number and deal with the powers of ten separately.

EX 3: Multiply or divide these.

a) \((4 \times 10^7) \cdot (3.5 \times 10^{-2})\)

b) \((3.2 \times 10^5) \div (2.1 \times 10^{-2})\)

Add/Subtract

If powers match, add the numbers and keep the powers of ten.

If powers do not match, add or subtract in decimal notation.

EX 4: Add or subtract these.

a) \((2.3 \times 10^{-22}) - (1.5 \times 10^{-22})\)

b) \((3 \times 10^6) + (5 \times 10^4)\)
Scientific Notation

<table>
<thead>
<tr>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>- easy to write large or small numbers (w/ less space)</td>
<td>- easy to lose track of meaning/size of number</td>
</tr>
<tr>
<td>- convenient when multiplying or dividing</td>
<td>- hard to use for adding or subtracting (if powers are different)</td>
</tr>
</tbody>
</table>

EX 5: Use scientific notation for this computation. In the year 2006, the population of the U.S. hit 300 million. The national debt was $8.6 trillion. What was the national debt per person that year?