

$$A = P(1+APR)^{Y}$$
 $A = Account balance after Y years$ 
 $P = Principal amount invested$ 
 $APR = annual percentage rate (as a decimal)$ 
 $Y = number of years$ 

## Savings Plan Formula (regular payments)

Suppose you invest \$1000 at the end of each year for 5 years in an account that pays 10% interest compounded annually. What is the value after 5 years (future value)?

| Year  | amount generated  |           |
|-------|-------------------|-----------|
| 1     | 1000(1+0.1)4      | \$1464.10 |
| 2     | $1000(1+0.1)^3$   | \$1331.00 |
| 3     | $1000(1+0.1)^2$   | \$1210.00 |
| 4     | $1000(1+0.1)^{1}$ | \$1100.00 |
| 5     | $1000(1+0.1)^{0}$ | \$1000.00 |
| Total |                   | \$6105.10 |

$$A = PMT \cdot \frac{(1 + \frac{APR}{n})^{nY} - 1}{\frac{APR}{n}}$$

$$A = \text{balance after Y years}$$

$$APR = \text{annual interest rate}$$

$$n = \text{number of payment periods per year}$$

$$Y = \text{number of years}$$

$$PMT = \text{regular payment amount}$$

$$A = PMT \cdot \frac{(1 + \frac{APR}{n})^{nY} - 1}{\frac{APR}{n}}$$

$$A = \text{balance after Y years}$$

$$APR = \text{annual interest rate}$$

$$n = \text{number of payment periods per year}$$

$$Y = \text{number of years}$$

$$PMT = \text{regular payment amount}$$

EX 1: Find the savings plan balance after 5 years with an APR of 2.5% with monthly payments of \$100.

EX 2: At age 28 you begin saving \$50 at the end of each month in an account with an APR of 4%. How much will the balance be when you retire at age 65? How does this compare to the amount invested?

 $A = PMT \cdot \frac{(1 + \frac{APR}{n})^{nY} - 1}{\frac{APR}{n}}$ 

EX 3: At age 23 when you graduate, you start saving for retirement. Your investment plan pays an APR of 4.5%. You want to have \$5 million when you retire in 45 years. How much should you deposit monthly?  $A = PMT \cdot \frac{(1 + \frac{APR}{n})^{nY} - 1}{\frac{APR}{n}}$