$\approx\}\ulcorner @ \infty \Sigma \pi$

amave

Savings Plans and Investments

$$
A=P(1+A P R)^{Y}
$$

A $\quad=$ Account balance after Y years
P = Principal amount invested
APR = annual percentage rate (as a decimal)
Y = number of years

Savings Plan Formula (regular payments)

Suppose you invest $\$ 1000$ at the end of each year for 5 years in an account that pays 10% interest compounded annually. What is the value after 5 years (future value)?
Year amount generated

1	$1000(1+0.1)^{4}$	$\$ 1464.10$
2	$1000(1+0.1)^{3}$	$\$ 1331.00$
3	$1000(1+0.1)^{2}$	$\$ 1210.00$
4	$1000(1+0.1)^{1}$	$\$ 1100.00$
5	$1000(1+0.1)^{0}$	$\$ 1000.00$
Total		$\$ 6105.10$

$$
A=P M T \cdot \frac{\left(1+\frac{A P R}{n}\right)^{n Y}-1}{\frac{A P R}{n}} \quad \begin{array}{ll}
\text { A }=\text { balance after Y years } \\
\text { APR } & =\text { annual interest rate } \\
\text { n } & \text { number of payment periods per year } \\
\text { Y } & \text { number of years } \\
\text { PMT } & =\text { regular payment amount }
\end{array}
$$

$$
A=P M T \cdot \frac{\left(1+\frac{A P R}{n}\right)^{n Y}-1}{\frac{A P R}{n}} \quad \begin{array}{ll}
\text { A }=\text { balance after Y years } \\
\text { APR } & =\text { annual interest rate } \\
& \text { n }=\text { number of payment periods per year } \\
\text { Y }=\text { number of years } \\
\text { PMT } & =\text { regular payment amount }
\end{array}
$$

EX 1: Find the savings plan balance after 5 years with an APR of 2.5% with monthly payments of $\$ 100$.

EX 2: At age 28 you begin saving $\$ 50$ at the end of each month in an account with an APR of 4\%. How much will the balance be when you retire at age 65? How does this compare to the amount invested?

$$
A=P M T \cdot \frac{\left(1+\frac{A P R}{n}\right)^{n Y}-1}{\frac{A P R}{n}}
$$

EX 3: At age 23 when you graduate, you start saving for retirement. Your investment plan pays an APR of 4.5%. You want to have $\$ 5$ million when you retire in 45 years. How much should you deposit monthly?

$$
A=P M T \cdot \frac{\left(1+\frac{A P R}{n}\right)^{n Y}-1}{\frac{A P R}{n}}
$$

